CALCULATION OF THE STRESS-STRAIN STATE AND STRENGTH ANALYSIS OF CABLE CONDUIT PIPES IN AIRFIELD PAVEMENT STRUCTURES

Authors

DOI:

https://doi.org/10.32782/2415-8151.2025.38.2.11

Keywords:

airfield pavement, cable duct, stress-strain state, strength, numer- ical modeling, SCAD Office

Abstract

The article presents the results of a study on the stress-strain state of airfield pavement structures with cable duct pipes embedded within their layers. The interaction of structural elements under the action of self-weight of materials and variable operational loads from modern large take-off mass aircraft is analyzed. Special attention is paid to the influence of pipe positioning within pavement layers on the distribution of stresses and strains, as well as on the overall load-bearing capacity of the structure. The study was carried out using numerical modeling in the SCAD Office soft-ware package. Strength verification of pipes and sleeves was performed, limit values of stresses and strains were determined, and dependencies between geometric parameters of the system and its load-bearing capacity were obtained. The results show that, provided the calculated parameters of pipe wall thickness and protective pavement layers are observed, reliable operation of the cable duct system is ensured without the risk of failure. The practical significance of the study lies in the possibility of applying the obtained data in the design and reconstruction of airfield pavements to ensure their durability and safe operation under conditions of intensive aviation loads. Modern airfield operating conditions are associated with high loads from new-generation aircraft. This necessitates increased reliability of engineering networks, in particular cable ducts arranged within pavement structures. Insufficient attention to their stress-strain state may lead to damage and disruption of system functioning. Modern airfield operating conditions are associated with high loads from new-generation aircraft. This necessitates increased reliability of engineering networks, in particular cable ducts arranged within pavement structures. Insufficient attention to their stress-strain state may lead to damage and disruption of system functioning. Purpose. To assess the stress-strain state and verify the strength of cable duct pipes in airfield pavement structures for different placement options, taking into account the action of permanent and variable loads. Methodology. The research methods are based on the use of the finite element method in calculating the stress-strain state of cable duct pipes in airfield pavement structures. Results. The calculations showed that the studied cable duct structures meet the requirements of strength and operational reliability. The pipe wall thickness and sleeve parameters ensure permissible stresses and strains under loads from modern aircraft (A321 NEO XLR, B737-9 MAX). The obtained results can be used to justify design decisions in the construction and modernization of airfield pavements. Scientific novelty. The scientific novelty lies in the improvement of existing methods for assessing the stress-strain state of cable duct pipes in airfield pavement structures. Practical relevance. The practical significance of the work lies in the possibility of applying the obtained results during the reconstruction and new construction of airfields.

References

Бєлятинський А.О., Першаков В.М., Талах С.М., Дубик О.М. Визначення напружено- деформованого стану жорстких аеродромних покриттів від багатоколісного навантаження надважкого літака. Вісник ХНАДУ. 2020. № 89. С. 59–66. https://doi.org/10.30977/BUL.2219-5548.2020.89.0.59

Дубик О.М. Розрахунок на міцність захисних залізобетонних обойм безнапірних труб дощових мереж від дії дорожнього покриття і тиску тягача НК– 80. Автомобільні дороги і дорожнє будівництво. 2013. Вип. 87. С. 23–28.

Родченко О.В. Комп’ютерні технології проєктування двошарових жорстких аеродромних покриттів. Промислове будівництво та інженерні споруди. 2020. № 2. С. 19–23.

Талах С.М., Дубик О.М., Лисницька К.М., Ільченко В.В. Чисельне моделювання напружено-деформованого стану жорстких аеродромних покриттів за взаємодії зі слабкою ґрунтовою основою. Галузеве машинобудування, будівництво. 2019. № 1(52). С. 124–132. https://doi.org/10.26906/znp.2019.52.1685

Cai J., Wong L., Yan H. Dynamic Response of Airport Concrete Pavement to Impact Loading. Adv Mater Res. 2012. Vol. 594–597. P. 1395–1401. https://doi.org/10.4028/www.scientific.net/AMR.594-597.1395

Aldea D., Popescu C.-G., Vasiliu M. Comparative numerical studies on the structural behavior of buried pipes subjected to extreme environmental actions. Materials. 2022. Vol. 15. P. 3385. https://doi.org/10.3390/ma15093385

Dubyk O. Improving the monitoring of the operational and technical condition of rigid airfield pavements. Academic journal. Industrial Machine Building, Civil Engineering. 2021. Vol. 2(57). P. 59–67. https://doi.org/10.26906/znp.2019.52.1685

Hammad, A., Attia, M.A., Radwan, A.M., Farag, A. The behavior of underground conduits buried in soil. Engineering Research Journal. 2024. Vol. 179. P. 106–140. https://doi.org/10.21608/erj.2024.345257

Oh, H.J., Cho, Y.K., Seo, Y., Kim, S.-M. Experimental analysis of curling behavior of continuously reinforced concrete pavement. Construction and Building Materials. 2016. Vol. 128. P. 57–66. https://doi.org/10.1016/j.conbuildmat.2016.10.079

Kavin Mathi K., Nallasivam K. Static Analysis of Rigid Airfield Pavement Using Finite Element Method Vs Closed-Form Solution. Computational Engineering and Physical Modeling. 2022. Vol. 5. P. 23–50. https://doi.org/10.22115/cepm.2023.354941.1219

Kavin Mathi K., Nallasivam K. Dynamic and Fatigue Life Prediction Analysis of Airfield Runway Rigid Pavement Using Finite Element Method. Computational Engineering and Physical Modeling. 2022. Vol. 5(3). P. 1–23. https://doi.org/10.22115/CEPM.2022.347999.1215

Lee H.-B., Park W.-J., Roh S. Performance evaluation of buried concrete pipe considering soil pressure and crack propagation using 3D finite element analysis. Applied Sciences. 2021. Vol. 11(7). P. 3292. https://doi.org/10.3390/app11073292

Liu P., Wang C., Lu W., Moharekpour M., Oeser M., Wang D. Development of an FEM-DEM Model to Investigate Preliminary Compaction of Asphalt Pavements. Buildings. 2022. Vol. 12. P. 932. https://doi.org/10.3390/buildings12070932

Nam, B.H., Yeon, J.H., Behring, Z. Effect of daily temperature variations on the continuous deflection profiles of airfield jointed concrete pavements. Construction and Building Materials. 2014. Vol. 73. P. 261–270. https://doi.org/10.1016/j.conbuildmat.2014.09.073

Rahmawati A., Rahmawati F. Runway pavement strength evaluation of Yogyakarta International Airports depends on ICAO (ACN/PCN) method with COMFAA 3.0 software. International Journal of Integrated Engineering. 2022. Vol. 14. P. 350–359. https://doi.org/10.1007/s41062-024-01376-x

Rezaei-Tarahomi A, Kaya O, Ceylan H, Kim S, Gopalakrishnan K, Brill DR. Development of rapid three- dimensional finite-element based rigid airfield pavement foundation response and moduli prediction models. Transp Geotech. 2017. Vol. 13. P. 81–91. https://doi.org/10.1016/j.trgeo.2017.08.011

Shafabakhsh G, Kashi E, Tahani M. Analysis of runway pavement response under aircraft moving load by FEM. J Eng Des Technol. 2018. Vol. 16. P. 233–243. https://doi.org/10.1108/JEDT-09-2017-0093

Talakh, S., Dubyk, O., Bashynska, O., Ilchenko, V. Some Technical Solutions for the Use of Aerodrome Pavements in the Soft Soil Conditions. Springer Nature Switzerland. Proceedings of the 2nd International Conference on Building Innovations, Lecture Notes in Civil Engineering. Springer, Cham. 2019. № 73. P. 303. https://doi.org/10.1007/978-3-030-42939-3_31

Qin, Y., Hiller, J. E. Modeling the temperature and stress distributions in rigid pavements: impact of solar radiation absorption and heat history development. KSCE Journal of Civil Engineering. 2011. Vol. 15. P. 1361–1371. https://doi.org/10.1007/s12205-011-1322-6

Yuan J., Li W., Li Y., Ma L., Zhang J. Fatigue models for airfield concrete pavement: literature review and discussion. Materials. 2021. Vol. 14. Article 6579. https://doi.org/10.3390/ma14216579

Published

2025-11-20

How to Cite

Dubyk, O., Dashkova, S., & Danilin, O. (2025). CALCULATION OF THE STRESS-STRAIN STATE AND STRENGTH ANALYSIS OF CABLE CONDUIT PIPES IN AIRFIELD PAVEMENT STRUCTURES. Theory and Practice of Design, 2(38), 120–129. https://doi.org/10.32782/2415-8151.2025.38.2.11

Issue

Section

Статті