Дослідження методу виявлення об’єктів за узагальненими канальними характеристиками кольору для застосування у БАС
DOI:
https://doi.org/10.18372/2306-1472.1.13651Ключові слова:
БАС, штучний інтелект, узагальнені канальні характеристики, виявлення об’єктів, відеопотікАнотація
Мета: Робота спрямована на те, щоб визначити штучний інтелект як ключовий пріоритет у питаннях досліджень та розробок. Розгляд існуючих методів виявлення об'єктів є одним з важливих завдань статті. Представлені результати досліджень спрямовані на дослідження проблеми виявлення рухомих об'єктів за допомогою даних візуальних датчиків для застосування у безпілотній авіаційній системі. Методи: представлений підхід грунтується на імовірнісних та статистичних методах обробки даних, зокрема використання підходу узагальнених канальних характеристик для виявлення об'єктів. Результати: Метод пошуку об'єктів за узагальненими канальними характеристиками за використанням відеопотоку з різними сценаріями був досліджений практичним способом. Результати експериментального дослідження використання узагальнених канальних характеристик для виявлення рухомих засобів транспорту, таких як автомобілів та трамваїв, свідчать про високі характеристики методу. Також досліджено залежність між часом тренування детектора та об'ємом позитивних екземплярів у конкретному випадку. Обговорення: Численні переваги методу виявлення об’єктів за узагальненими канальними характеристиками, такі як універсальність, простота реалізації та компроміс між часом обчислення та точністю виявлення, дозволяють використовувати його у завданнях виявлення людей, транспортних засобів, штучних та природних об'єктів для застосуванні у БАС. Представлені результати можуть бути впроваджені в безпілотні авіаційні системи для пошуку та моніторингу рухомих об'єктів.
Посилання
European Commission (2018) Communication from the Commission to the European Parliament, the European Council, the Council, the European economic and social committee and the committee of the regions. Artificial Intelligence for Europe, Brussels, 19 p.
IATA (2018) AI in aviation. Exploring the fundamentals, threats and opportunities of artificial intelligence (AI) in the aviation industry. White Paper, 20 p.
European Commission (2018) Declaration of cooperation on Artificial Intelligence, Brussels. Available at: https://ec.europa.eu/jrc/communities/sites/jrccties/files/2018aideclarationatdigitaldaydocxpdf.pdf
Viola P., Jones M. (2001) Rapid object detection using a boosted cascade of simple features. IEEE Conference on Computer Vision and Pattern Recognition, 9 p.
Freund, Y. and Schapire, R.E. (1997) A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), pp.119-139.
Jones, M.J. and Viola, P., (2001) Robust real-time object detection. In Workshop on statistical and computational theories of vision, Vol. 266, p. 56.
Angelova, A., Krizhevsky, A. and Vanhoucke, V. (2015) Pedestrian detection with a large-field-of-view deep network. In Robotics and Automation (ICRA), IEEE International Conference, pp. 704-711.
Pérez, A., Larrañaga, P. and Inza, I., (2009) Bayesian classifiers based on kernel density estimation: Flexible classifiers. International Journal of Approximate Reasoning, 50(2), p.341.
Kharchenko, V., Kukush, A., Kuzmenko, N. and Ostroumov, I., (2017). Probabilistic Approach to Object Detection and Recognition for Videostream Processing. Proceedings of the NAU, № 2(71), pp.8-14.
Benenson, R., Mathias, M., Timofte, R. and Van Gool, L., (2012) Pedestrian detection at 100 frames per second. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp. 2903-2910.
Dalal, N. and Triggs, B., (2005) Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition. CVPR 2005. IEEE Computer Society Conference on Vol. 1, pp. 886-893.
Dollar P., Tu Z., Perona P., Belongie S. (2009) Integral Channel Features. British Machine Vision Conference, 11p.
Dollár, P., Belongie, S.J. and Perona, P., (2010) The fastest pedestrian detector in the west. In Bmvc, Vol. 2, No. 3, p. 7.
Dollár, P., Appel, R., Belongie, S. and Perona, P., (2014) Fast feature pyramids for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), pp.1532-1545.
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, погоджуються з такими умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).