CRITICAL ANALYSIS OF EXPERIMENTAL RESEARCH METHODS AND FACTORS AFFECTING THE BOND BETWEEN REINFORCEMENT AND CONCRET

Authors

DOI:

https://doi.org/10.32782/2415-8151.2025.38.2.10

Keywords:

reinforced concrete, bond between reinforcement and concrete, bond-slip model, average bond stress, pull-out test, beam-end test, distributed fiber optic sensing (DFOS) method, digital image correlation (DIC) method

Abstract

Purpose. The purpose of this study is to conduct a systematic critical analysis of existing experimental methods (pull-out and beam tests) for studying the bond of reinforcement with concrete, systematization of numerous determining factors (in- cluding the properties of concrete and reinforcement, environmental conditions, ge- ometric and dynamic parameters) on the strength and nature of bond failure, as well as justifying the need to use modern monitoring techniques (DFOS and DIC) to im- prove the reliability of the bond–slip model under conditions of varying types of rebar confinement in the concrete matrix. Methodology. The study is based on a critical analysis and comparison of traditional experimental methods (pull-out/push-in tests and beam tests/beam end tests), which are fundamental for determining average and local bond stresses. The influence of material factors (concrete class, reinforcement diameter), geometric fac- tors (anchorage length, concrete cover, confinement, casting conditions), and en- vironmental/dynamic factors (corrosion, temperature, loading rate) has been sys- tematized. The key methodological approach is to analyze the potential of the latest monitoring techniques: distributed fiber optic sensing (DFOS) and digital image cor- relation (DIC). Results. It has been found that pull-out tests create an unrepresentative stress- strain state (concrete compression) and often give overestimated bond strength values, especially in specimens without a bond-free zone. In contrast, beam tests (in particular, the fib Model Code 2020 modification) better reflect the behavior of reinforcement in the tension zone of elements. DFOS and DIC allow accurate calcu- lation of local parameters τbond and δ, providing external validation of data and con- trol of fracture kinematics. It has been established that increasing the anchorage length (e.g., from 5Ø to 10Ø) leads to a decrease in the average bond strength (up to 32%). Well-confinement of rebar in concrete prevents brittle splitting, promoting plastic pull-out failure, which is better described by the τbond – δ analytical models recommended by current building codes. Corrosion (over 6%) and high temperatures significantly reduce bond strength, while high loading rates (dynamic effects) can in- crease it (dynamic factor of increase DIF ≈ 1.5). Scientific novelty. The scientific novelty lies in the systematic critical synthesis of the multifactorial problem of bond, which highlights the limitations of traditional experimental databases and justifies the synergistic use of DFOS and DIC as a key tool for obtaining detailed local data. These data are necessary for mechanistically justified refinement of the parameters of the bond – slip model under conditions that correspond to operational ones (taking into account the influence of confinement, technological, dynamic, and corrosion effects). Practical relevance. A critical analysis of existing traditional testing methods allows the development of new, more advanced methods for experimental studies of the bond between reinforcement and concrete. The conclusions regarding the feasi- bility of testing methods and influencing factors create a reliable experimental basis for the development of improved numerical and analytical models of bond, which will ultimately increase the reliability of calculations of crack width, anchoring, and de- velop sound recommendations for the renovation and reinforcement of buildings and structures.

References

Дмитренко Є.А., Бакай Т.В. Залежності зчеплення арматури з бетоном за різних видів руйнування зони їх контакту. Збірник тез доповідей ХII Міжнародної науково-технічної конференції «Крамаровські читання». Київ : НУБіП України, 2025. С. 524–527.

Дмитренко Є.А., Денисенко Д.О. Зміна параметрів зчеплення арматури з бетоном за дії довготривалих навантажень. Збірник тез доповідей ХII Міжнародної науково-технічної конференції «Крамаровські читання». Київ : НУБіП України, 2025. С. 527–530.

Ромашко О.В., Журавський В.М., Ромашко О.Д. Узагальнена модель зчеплення арматури з бетоном. Ресурсоекономні матеріали, конструкції, будівлі та споруди. 2019. Вип. 37. С. 214–221. URL: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21F MT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=rmkbs_2019_37_28

Філіпчук С., Поляновська О. Дослідження опору витягання арматурних стержнів із бетонів різних класів. Сучасні технології та методи розрахунків у будівництві. 2019. Вип. 11. С. 132–139. DOI: https://doi.org/10.36910/6775-2410-6208-2019-1(11)-16.

Філіпчук С.В., Поляновська О.Є. Порівняльний аналіз досліджень зчеплення арматури з бетоном різними методами випробування. Ресурсоекономні матеріали, конструкції, будівлі та споруди. 2022. Вип. 41. С. 253–257. DOI: https://doi.org/10.31713/budres.v0i41.028.

Яковенко І.А., Дмитренко Є.А. Класифікація параметрів та пошук аналітичних залежностей зчеплення арматури з бетоном у залізобетонних конструкціях будівель та споруд. Збірник тез доповідей ХII Міжнародної науково-технічної конференції «Крамаровські читання». Київ : НУБіП України, 2025. С. 533–536.

ASTM. Standard Test Method for Comparing Bond Strength of Steel Reinforcing Bars to Concrete Using Beam-End Specimens. A944-10. USA: ASTM, 2015. 4 p. DOI: http://doi.org/10.1520/A0944-10R15.

Bado M.F., Casas J.R., Kaklauskas G. Distributed Sensing (DOFS) in Reinforced Concrete Members for Reinforcement Strain Monitoring, Crack Detection and Bond-Slip Calculation. Engineering Structures. 2021. Vol. 226. No. 111385. DOI: http://doi.org/10.1016/j.engstruct.2020.111385.

Corres E., Muttoni A. Bond of Steel Reinforcement Based on Detailed Measurements: Results and Interpretations. Structural Concrete. 2023. Vol. 24. P. 7173–7204. DOI: http://doi.org/10.1002/suco.202300324.

Corres E., Muttoni A. Local Bond-Slip Model Based on Mechanical Considerations. Engineering Structures. 2024. Vol. 314. No. 1181190. DOI: http://doi.org/10.1016/j.engstruct.2024.118190.

Dmytrenko Y., Usenko M., Yakovenko I. Collisions of Strength Determination Modeling for Eccentrically Compressed Reinforced Concrete Constructions with Small Eccentricities by Normal Sections in Lira-FEM Software. In: Blikharskyy Z., Zhelykh V. (Eds.). Proceedings of EcoComfort 2024. EcoComfort 2024. Lecture Notes in Civil Engineering. Cham: Springer, 2024. P. 50–63. DOI: https://doi.org/10.1007/978-3-031-67576-8_5.

Fan C., Zheng Y., Wen Y., Sun M. Classification and Prediction of Deformed Steel and Concrete Bond-Slip Failure Modes Based on SSA-ELM Model. Structures. 2023. Vol. 57. No. 105131. DOI: https://doi.org/10.1016/j.istruc.2023.105131.

Galkovski T., Mata-Falcón J., Kaufmann W. Experimental Investigation of Bond and Crack Behaviour of Reinforced Concrete Ties Using Distributed Fibre Optical Sensing and Digital Image Correlation. Engineering Structures. 2023. Vol. 292. No. 116467. DOI: https://doi.org/10.1016/j.engstruct.2023.116467.

Kang S.-B., Wang S., Long X., Wang D.-D., Wang C.-Y. Investigation of Dynamic Bond-Slip Behaviour of Reinforcing Bars in Concrete. Construction and Building Materials. 2020. Vol. 262. No. 120824. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120824.

Khaksefidi S., Ghalehnovi M., Brito J. Bond Behaviour of High-Strength Steel Rebars in Normal (NSC) and Ultra-High-Performance Concrete (UHPC). Journal of Building Engineering. 2021. Vol. 33. No. 101592. DOI: http://doi.org/10.1016/j.jobe.2020.101592.

Long X., Wang C.-Y., Zhao P.-Z., Kang S.-B. Bond Strength of Steel Reinforcement under Different Loading Rates. Construction and Building Materials. 2020. Vol. 238. No. 117749. DOI: http://doi.org/10.1016/j.conbuildmat.2019.117749.

Lv X., Yu Z., Shan Z. Bond Stress-Slip Model for Rebar-Concrete Interface Under Monotonic and Cyclic Loading. Structures. 2021. Vol. 34. P. 498–506. DOI: https://doi.org/10.1016/j.istruc.2021.07.093.

Mak W.T.M., Lees J.M. Bond Strength and Confinement in Reinforced Concrete. Construction and Building Materials. 2022. Vol. 355. No. 129012. DOI: http://doi.org/10.1016/j.conbuildmat.2022.129012.

Mazumder M.H., Gilbert R.I. Finite Element Modelling of Bond–Slip at Anchorages of Reinforced Concrete Members Subjected to Bending. SN Applied Science. 2019. Vol. 1. No. 1332. DOI: http://doi.org/10.1007/s42452-019-1368-5.

Metelli G., Cairns J., Plizzari G. A New fib Model Code Proposal for a Beam-End Type Bond Test. Structural Concrete. 2023. Vol. 24, No. 4. P. 4446–4463. DOI: http://doi.org/10.1002/suco.202300124.

RILEM TC. RC 6 Bond test for reinforcement steel. 2. Pull-out test. In: RILEM Recommendations for the Testing and Use of Constructions Materials. 1983. P. 218–220. URL: https://www.rilem.net/publication/publication/4?id_papier=4020

Vembu P.R.S., Ammasi A.K. A Comprehensive Review on the Factors Affecting Bond Strength in Concrete. Buildings. 2023. Vol. 13, No. 3. No. 577. DOI: https://doi.org/10.3390/buildings13030577.

Yakovenko I., Dmytrenko Y., Bakulina V. Construction of Analytical Coupling Model in Reinforced Concrete Structures in the Presence of Discrete Cracks. In: Bieliatynskyi A., Breskich V. (Eds.). Safety in Aviation and Space Technologies. Lecture Notes in Mechanical Engineering. Cham: Springer, 2023. P. 107–120. DOI: https://doi.org/10.1007/978-3-030-85057-9_10.

Yakovenko I.A., Dmytrenko Ye.A. Influence of Reinforcement Parameters on the Width of Crack Opening in Reinforced Concrete Structures. Achievements of Ukraine and EU Countries in Technological Innovations and Invention: coll.mon. Riga: Izdevnieciba «Baltija Publishing», 2022. P. 510–536. DOI: https://doi.org/ 10.30525/978-9934-26-254-8-18.

Zheng Y., Fan C., Ma J., Wang S. Review of Research on Bond–Slip of Reinforced Concrete Structures. Construction and Building Materials. 2023. Vol. 385. No. 131437. DOI: http://doi.org/10.1016/j.conbuildmat.2023.131437.

Published

2025-11-20

How to Cite

Dmytrenko, Y., Usenko, M., Pylypaka, O., Bakay, T., & Yakovenko, I. (2025). CRITICAL ANALYSIS OF EXPERIMENTAL RESEARCH METHODS AND FACTORS AFFECTING THE BOND BETWEEN REINFORCEMENT AND CONCRET . Theory and Practice of Design, 2(38), 104–119. https://doi.org/10.32782/2415-8151.2025.38.2.10

Issue

Section

Статті