PROPOSALS FOR AIRPORT RESTORATION

Authors

DOI:

https://doi.org/10.32782/2415-8151.2025.37.9

Keywords:

airfield pavements, airfield elements, aircraft, finite element method, stress–strain state, ACR–PCR method, soil foundations

Abstract

The article presents an analysis of the stress–strain state of rigid airfield pavement structures under the load of the heavy aircraft An-225 Mriya. The results of determining the bearing capacity and calculating the stress–strain state of rigid airfield pavements were obtained. Based on the performed calculations, constructive solutions and proposals for the restoration of rigid airfield pavements are provided. Isolines of vertical displacements, bending moments, and shear forces in rigid airfield pavement slabs under the load of the An-225 aircraft were obtained. The values of the classification parameters (PCR) of rigid airfield pavements were determined. A set of numerical experimental studies made it possible to solve the scientific problem of assessing the stress–strain state of rigid airfield pavement structures, taking into account the spatial load of aircraft. The purpose of the study is to determine the bearing capacity and investigate the stress–strain state of rigid airfield pavement structures considering real spatial loads and soil foundation properties, on the basis of which constructive proposals and engineering solutions for airfield pavements are provided. Methodology. The research methods include literature review, the ACR–PCR classification parameter method, and the finite element method. Results. Calculations of rigid airfield pavement structures under the load of the heavy An-225 aircraft were performed. Numerical experiments using the finite element method and the ACR–PCR method made it possible to determine the bearing capacity of the pavement and assess its stress–strain state. The calculations showed that the existing runway structure of Hostomel International Airport does not ensure the operation of the An-225 even with minimal take-off intensity. The need to increase the thickness of the upper layer of cement concrete pavement to 350–391 mm depending on the number of take-offs was established. The proposed constructive solutions are aimed at improving the strength and durability of airfield pavements, taking into account real spatial loads and soil foundation properties. Scientific novelty. The scientific novelty lies in the implementation of a fundamentally new approach to the study of the stress–strain state of rigid airfield pavements based on the finite element method, considering real spatial loads and the influence of soil foundations. Practical relevance. The practical significance of the work lies in the possibility of applying the results of stress–strain calculations of rigid airfield pavement structures under real spatial aircraft loads in the design and construction of airfield elements.

References

Гамеляк І.П., Дмитриченко А.М. Система управління техніко-експлуатаційним станом аеродромного покриття. Автомобільні дороги і дорожнє будівництво. 2023. Вип. 113. Ч. 2. С. 141–155.

Гамеляк І.П., Дмитриченко А.М., Райковський В.Ф. Концепція моніторингу та діагностики штучних аеродромних покриттів. Airport Planning, Construction and Maintenance Journal. 2023. № 1. С. 14–24.

Гамеляк І.П., Дмитриченко А.М., Райковський В.Ф. Удосконалення методики оцінювання стану аеродромного покриття. Airport Planning, Construction and Maintenance Journal. 2023. № 2. С. 20–32.

Родченко О. В. Комп’ютерні технології проектування двошарових жорстких аеродромних покриттів. Промислове будівництво та інженерні споруди. 2020. № 2. С. 19–23.

Родченко О.В. Удосконалення методу визначення несучої здатності двошарових монолітних цементобетонних аеродромних покриттів. Промислове будівництво та інженерні споруди. 2017. № 4. С. 20–23.

Талах С. М., Дубик О. М., Лисницька К. М., Ільченко В. В. Чисельне моделювання напружено-деформованого стану жорстких аеродромних покриттів при взаємодії зі слабкою ґрунтовою основою. Галузеве машинобудування, будівництво. 2019. № 1(52). С. 124–132.

Dubyk O. Improving the monitoring of the operational and technical condition of rigid airfield pavements. Industrial Machine Building, Civil Engineering. 2021. № 2(57). С. 59–67.

Annex 14: Aerodromes. Volume I: Aerodromes Design and Operations. 9th Edition. July 2022. URL: https://news.mcaa.gov.mn/uploads/bookSubject/2022-10/63587f6c9ed35.pdf

Cai J., Wong L.N.Y., Yan H.W. Dynamic response of airport concrete pavement to impact loading. Advanced Materials Research. 2012. Vol. 594–597. Р. 1395–1401. DOI: 10.4028/www.scientific.net/AMR.594-597.1395.

ICAO. Doc 9157 Aerodrome Design Manual. Part 3: Pavements. 3rd Edition. 2022 (Unedited). URL: https://www.scribd.com/document/718551321/Aerodrome-Design-Manual-Part-3-Pavements-Doc-9157-Part-3-Edition

Kavin Mathi K., Nallasivam K. Static analysis of rigid airfield pavement using finite element method vs closed-form solution. Computational Engineering and Physical Modeling. 2022. Vol. 5, № 4. С. 23–50. DOI: 10.22115/cepm.2023.354941.1219.

Kavin Mathi K., Nallasivam K. Dynamic and fatigue life prediction analysis of airfield runway rigid pavement using finite element method. Computational Engineering and Physical Modeling. 2022. Vol. 5, № 3. Р. 1–23. DOI: 10.22115/CEPM.2022.347999.1215.

Liu P., Wang C., Lu W., Moharekpour M., Oeser M., Wang D. Development of an FEM-DEM model to investigate preliminary compaction of asphalt pavements. Buildings. 2022. Vol. 12, № 7. Article 932. DOI: 10.3390/buildings12070932.

Rahmawati A., Rahmawati F. Runway pavement strength evaluation of Yogyakarta International Airports depends on ICAO (ACN/PCN) method with COMFAA 3.0 software. International Journal of Integrated Engineering. 2022. Vol. 14. Р. 350–359.

Rezaei-Tarahomi A., Kaya O., Ceylan H., Kim S., Gopalakrishnan K., Brill D. R. Development of rapid three-dimensional finite-element based rigid airfield pavement foundation response and moduli prediction models. Transportation Geotechnics. 2017. Vol. 13. Р. 81–91. DOI: 10.1016/j.trgeo.2017.08.011.

Shafabakhsh G., Kashi E., Tahani M. Analysis of runway pavement response under aircraft moving load by FEM. Journal of Engineering, Design and Technology. 2018. Vol. 16. Р. 233–243. DOI: 10.1108/JEDT-09-2017-0093.

Xu B., Zhang W., Mei J., Yue G., Yang L. Optimization of structure parameters of airfield jointed concrete pavements under temperature gradient and aircraft loads. Advances in Materials Science and Engineering. 2019. Article ID 3251590. 11 p. DOI: 10.1155/2019/3251590.

Yuan J., Li W., Li Y., Ma L., Zhang J. Fatigue models for airfield concrete pavement: literature review and discussion. Materials. 2021. Vol. 14. Article 6579. DOI: 10.3390/ma14216579.

Published

2025-10-30

How to Cite

Dubyk, O., Dudar, T., Chernyshova, O., & Osovsky, I. (2025). PROPOSALS FOR AIRPORT RESTORATION. Theory and Practice of Design, (37), 97–110. https://doi.org/10.32782/2415-8151.2025.37.9

Issue

Section

АRCHITECTURE AND CONSTRUCTION