NUMERICAL STUDIES OF THE DYNAMIC IMPACT OF THE BLAST WAVE ON PROTECTIVE STRUCTURES
DOI:
https://doi.org/10.32782/2415-8151.2025.36.10Keywords:
blast wave, protective structures, numerical modeling, ANSYS AUTODYN, Kingery-Bulmash, pressure pulse, reflected pressure, dynamic loading.Abstract
Purpose. The study is aimed at numerical modeling of the dynamic impact of a blast wave on protective structures. The main goal is to compare three approaches to calculating blast loads — the analytical method, the empirical Kingery-Bulmash model, and modeling in the Ansys AUTODYN software environment — in order to study different modeling techniques and analyze the behavior of structures under the influence of an explosion. Methodology. The work used three methods of numerical analysis: (1) analytical calculation according to the method described in scientific sources, (2) an online calculator based on the empirical Kingery-Bulmash equations, and (3) modeling in Ansys AUTODYN using the RHT and JWL EOS material models. For each method, calculation models were built, simulations were performed, and data on pressure, momentum, front velocity, and duration of the positive phase were collected. Results. Detailed calculations of the blast wave parameters at different distances from the epicenter were obtained for each method. It was found that the largest discrepancies between the methods are observed in the estimates of the reflected pressure (up to 91.5%) and the duration of the positive phase (up to 120%). Scientific novelty. For the first time, a systematic comparison of three methods for numerical modeling of the impact of an explosion on a reinforced concrete structure was performed with an assessment of the discrepancies between the results and an analysis of the causes of these deviations. A method for comparing each approach based on the relative deviation from the average value was proposed. Practical relevance. The results of the study are useful for engineers and designers of protective structures. It was concluded that the use of AUTODYN is appropriate for accurate analysis of complex objects, while analytical methods can be used at the previous stages.
References
Основи інженерного захисту об’єктів критичної інфраструктури енергетичної галузі України від засобів повітряного нападу противника : монографія / М.В. Коваль та ін. ; за ред. А.С. Білика. Київ : Генеральний штаб Збройних сил України, 2023. 185 с.
Abir M., Arumugam D., Dhana Sekaran, Subash T.R. Numerical simulation of blast wave propagation in layered soil featuring soil-structure interaction. Eccomas Proceedia. Computational Methods in Structural Dynamics and Earthquake Engineering : 6th ECCOMAS Thematic Conference (Rhodes Island, Greece, 15–17 June 2017) / eds. M. Papadrakakis, M. Fragiadakis, 2017. P. 4752–4765.
Barabash M.S., Bashynskyi O.V. Some approaches to modelling blast wave impact on structures in LIRA-FEM. Опір матеріалів і теорія споруд. 2024. № 113. С. 241–249. DOI: 10.32347/2410-2547.2024.113.241-249.
Catovic A., Kljuno E. Comparation of analytical models and review of numerical simulation method for blast wave overpressure estimation after the explosion. Advances in Science, Technology and Engineering Systems Journal. 2021. Vol. 6, No. 1. P. 748–758. DOI: 10.25046/aj060187. [5] Chapra S.C., Canale R.P. Numerical methods for engineers. 8th ed. New York : McGraw-Hill Education, 2014. 992 p.
Cracco M., Stabile G., Lario A. et al. Deep learning-based reduced-order methods for fast transient dynamics [Електронний ресурс]. arXiv. 2022. 15 груд. Режим доступу: https://arxiv.org/abs/2212.07737.
Isaac O.S., Alshammari O.G., Pickering E.G., Clarke S.D., Rigby S.E. Blast wave interaction with structures – An overview. International Journal of Protective Structures. 2022. Vol. 14(4) 584–620. С. 1–47. DOI: 10.1177/20414196221118595.
Kumar A., Rajesh R. Blast waves in two and three dimensions: Euler versus Navier–Stokes equations. Journal of Statistical Physics. 2022. Vol. 188, No. 2. Article ID: 12. DOI: 10.1007/s10955-022-02933-3.
Laine L., Sandvik A. Derivation of mechanical properties for sand. Proceedings of the 4th SILOS Conference. Singapore : CI-Premier, 2004. P. 361–367.
Lee E.L., Finger M., Collins S.A. JWL equations of state coefficients for high explosives. Livermore (USA) : Lawrence Livermore National Laboratory, 1973. 17 p. (UCID-16189).
Li X., Chen H., Yin J., Wang Z. Corner convergence effect of enclosed blast shock wave and high-pressure range. Applied Sciences. 2022. Vol. 12, No. 22. Article ID: 11341. DOI: 10.3390/ app122211341.
Morsel A., Masi F., Marché E. et al. miniBLAST: a novel experimental setup for laboratory testing of structures under blast loads. Experimental Techniques. 2025. DOI: 10.1007/s40799-024-00771-4.
Resistance of structures to explosion effects: review report of testing methods / Kevin C., Ans van Doormaal, Christof Haberacker, Götz Hüsken, Martin Larcher, Arja Saarenheimo, George Solomos, Alexander Stolz, Laurent Thamie, Georgios Valsamos ; European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen. Luxembourg : Publications Office of the European Union, 2013. 78 р. (EUR 26449 EN). DOI: 10.2788/57271
Riedel W. Beton unter dynamischen Lasten / W. Riedel ; Fraunhofer EMI. Stuttgart : IRB-Verlag, 2004. – 280 р.
Riedel W., Schmolinske E., Thoma K. Numerical assessment for impact strength. International Journal of Impact Engineering. 2009. Vol. 36. P. 283–293.
Riedel W., Thoma K., Hiermaier S., Schmolinske E. Penetration of reinforced concrete. Proceedings of the International Symposium on Interaction of the Effects of Munitions with Structures (ISIEMS’99). 1999. P. 315.
Rogers G.F.C., Mayhew Y.R. Thermodynamic and transport properties of fluids: SI units. 4th ed. Oxford : Blackwell Science, 2000. 392 p. [18] United States. Department of Defense. UFC 3-340-02: Structures to resist the effects of accidental explosions : technical report. Washington, D.C. : Department of Defense, 2008. Change 2, 1 Sept. 2014.
Yu T., Sun J., Wang J. et al. Study on the propagation law and waveform characteristics of a blasting shock wave in a numerical simulation of blast wave propagation in layered soil featuring soil-structure interaction. Computational Methods in Structural Dynamics and Earthquake Engineering : Proc. 6th ECCOMAS Thematic Conf., Rhodes Island, Greece, 15–17 June 2017 / за ред. M. Papadrakakis, M. Fragiadakis. 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Антон Павлович Поляков, Олександр Іванович Лапенко

This work is licensed under a Creative Commons Attribution 4.0 International License.










