ANALYSIS OF THE POSSIBILITY OF USING BIOCHAR IN ASPHALT CONCRETE

Authors

DOI:

https://doi.org/10.32782/2415-8151.2025.36.5

Keywords:

biochar, asphalt concrete, road construction, pyrolysis, ecological efficiency, carbon-based modifiers.

Abstract

Purpose. The purpose of this study is to investigate the impact of biochar, derived from various types of plant biomass, on the physical and mechanical properties of asphalt concrete mixtures. The goal is to enhance the ecological sustainability and operational performance of pavement materials in road construction. Methodology. The study involved a comparative analysis of the properties of biochar produced by pyrolysis of different biomass sources. Laboratory samples of asphalt mixtures were prepared with partial replacement of mineral filler by biochar (up to 50% by weight). These samples underwent a series of physical, chemical, and mechanical tests to evaluate their strength, moisture resistance, temperature sensitivity, and adhesion properties. Results. The findings demonstrate that adding biochar in the range of 40–50% by weight of the mineral filler improves asphalt mixture strength, reduces water saturation, enhances resistance to thermal aging, and lowers the mixture’s placement temperature – resulting in energy savings. The integration of biochar leads to a more environmentally friendly and durable pavement structure. Scientific novelty. This research systematizes, for the first time, the relationship between biochar characteristics (particle size, biomass type, moisture content) and asphalt concrete performance. It provides scientific justification for the partial replacement of conventional mineral filler with biochar without compromising the technical properties of asphalt mixtures. Practical relevance. The results can be implemented in the development of eco-efficient road surfaces with improved durability, moisture resistance, and aging stability. Additionally, this approach contributes to carbon footprint reduction and the effective utilization of organic waste in construction practices.

References

Awasthi M.K., Wang M., Chen H., Wang Q., Zhao J., Ren X., Li D.-S., Awasthi S.K., Shen F., Li R., Zhang Z. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresource Technology. 2017. Vol. 224. P. 428–438. DOI: 10.1016/j.biortech.2016.11.105.

Bakraoui M., Karouach F., Ouhammou B., Aggour M., Essamri A., El Bari H. Biogas production from recycled paper mill wastewater by UASB digester: optimal and mesophilic conditions. Biotechnology Reports. 2020. Vol. 25. Article e00402. DOI: 10.1016/j.btre.2019.e00402.

Bergman P.C.A., Boersma A.R., Zwart R.W.R., Kiel J.H.A. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations; Report No. ECN-C--05-013. Petten : Energy Research Centre of The Netherlands (ECN), 2005. 71 p.

Brewer C.E., Chuang V.J., Masiello C.A., Gonnermann H., Gao X., Dugan B., Driver L.E., Panzacchi P., Zygourakis K., Davies C.A. New approaches to measuring biochar density and porosity. Biomass and Bioenergy. 2014. Vol. 66. P. 176–185. DOI: 10.1016/ j.biombioe.2014.03.059.

El-Naggar A., Lee S.S., Rinklebe J., Farooq M., Song H., Sarmah A.K., Zimmerman A.R., Ahmad M., Shaheen S.M., Ok Y.S. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma. 2019. Vol. 337. P. 536–554. DOI: 10.1016/ j.geoderma.2018.09.034.

Fathianpour A., Taheriyoun M., Soleimani M. Lead and zinc stabilization of soil using sewage sludge biochar: optimization through response surface methodology. Clean – Soil, Air, Water. 2018. Vol. 46. No. 10. Article 1700429. DOI: 10.1002/clen.201700429.

Fellet G., Marmiroli M., Marchiol L. Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Science of the Total Environment. 2014. Vols. 468–469. P. 598–608. DOI: 10.1016/j.scitotenv.2013.08.072.

Gomez-Eyles J.L., Sizmur T., Collins C.D., Hodson M.E. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution. 2011. Vol. 159. P. 616–622. DOI: 10.1016/j.envpol.2010.09.037. [9] Gong X., Huang D., Liu Y., Zeng G., Chen S., Wang R., Xu P., Cheng M., Zhang C., Xue W. Biochar facilitated the phytoremediation of cadmium contaminated sediments: metal behavior, plant toxicity, and microbial activity. Science of the Total Environment. 2019. Vol. 666. P. 1126–1133. DOI: 10.1016/j.scitotenv.2019.02.281.

Hu X., Xu J., Wu M., Xing J., Bi W., Wang K. та ін. Effects of biomass prepyrolysis and pyrolysis temperature on magnetic biochar properties. Journal of Analytical and Applied Pyrolysis. 2017. Vol. 127. P. 196–202. DOI: 10.1016/j.jaap.2017.09.003.

Jahirul M.I., Rasul M.G., Chowdhury A.A., Ashwath N. Biofuels production through biomass pyrolysis – a technological review. Energies. 2012. Vol. 5. P. 4952–5001. DOI: 10.3390/en5124952.

Kastner J.R., Miller J., Geller D.P., Locklin J., Keith L.H., Johnson T. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catalysis Today. 2012. Vol. 190. P. 122–132. DOI: 10.1016/j.cattod.2012.02.006.

Lehmann J. Biochar for environmental management: an introduction. In: Lehmann J., Joseph S. (Eds.). Biochar for Environmental Management: Science, Technology and Implementation. London : Earthscan, 2009. P. 1–12.

Li H., Dong X., da Silva E.B., de Oliveira L.M., Chen Y., Ma L.Q. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere. 2017. Vol. 178. P. 466–478. DOI: 10.1016/j.chemosphere.2017.03.072.

Lin Y., Ma X., Peng X., Yu Z., Fang S., Lin Y. та ін. Combustion, pyrolysis and char CO₂-gasification characteristics of hydrothermal carbonization solid fuel from municipal solid wastes. Fuel. 2016. Vol. 181. P. 905–915. DOI: 10.1016/j.fuel.2016.05.031.

Luo L., Wang G., Shi G., Zhang M., Zhang J., He J. та ін. The characterization of biochars derived from rice straw and swine manure, and their potential and risk in N and P removal from water. Journal of Environmental Management. 2019. Vol. 245. P. 1–7. DOI: 10.1016/ j.jenvman.2019.05.017.

Nag S.K., Kookana R., Smith L., Krull E., Macdonald L.M., Gill G. Poor efficacy of herbicides in biocharamended soils as affected by their chemistry and mode of action. Chemosphere. 2011. Vol. 84. P. 1572–1577. DOI: 10.1016/j.chemosphere.2011.05.052.

Pang S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances. 2019. Vol. 37. P. 589–597. DOI: 10.1016/j.biotechadv.2019.03.002.

Qian T.T., Wu P., Qin Q.-P., Huang Y.-N., Wang Y.-J., Zhou D.-M. Screening of wheat straw biochars for the remediation of soils polluted with Zn(II) and Cd(II). Journal of Hazardous Materials. 2019. Vol. 362. P. 311–317. DOI: 10.1016/j.jhazmat.2018.09.019.

Saidur R., Abdelaziz E.A., Demirbas A., Hossain M.S., Mekhilef S. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews. 2011. Vol. 15, No. 5. P. 2262–2289. DOI: 10.1016/ j.rser.2011.02.015.

Sharma A., Pareek V., Zhang D. Biomass pyrolysis – a review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews. 2015. Vol. 50. P. 1081–1096. DOI: 10.1016/ j.rser.2015.04.193.

Sohi S.P., Krull E., Lopez-Capel E., Bol R. A review of biochar and its use and function in soil. Advances in Agronomy. 2010. Vol. 105. P. 47–82. DOI: 10.1016/ S0065-2113(10)05002-9.

Spokas K.A., Cantrell K.B., Novak J.M., Archer D.W., Ippolito J.A., Collins H.P. та ін. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality. 2012. Vol. 41. P. 973–989. DOI: 10.2134/jeq2011.0069.

Wei J., Tu C., Yuan G., Liu Y., Bi D., Xiao L. та ін. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar. Environmental Pollution. 2019. Vol. 251. P. 56–65. DOI: 10.1016/j.envpol.2019.04.069.

Xun S., Yu I.K.M., Cao L., Tsang D.C.W., Zhang S., Ok Y.S. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology. 2017. Vol. 246. P. 254–270. DOI: 10.1016/j.biortech.2017.07.030.

Yao Y., Gao B., Inyang M., Zimmerman A.R., Cao X.D., Pullammanappallil P., Yang L.Y. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource Technology. 2011. Vol. 102. P. 6273–6278. DOI: 10.1016/j.biortech.2011.03.001.

Zhang Y., Sun H., Min L., Ren C. Biochars change the sorption and degradation of thiacloprid in soil: insights into chemical and biological mechanisms. Environmental Pollution. 2018. Vol. 236. P. 158–167. DOI: 10.1016/j.envpol.2018.01.043.

Zhou D., Orlov A., Wang Y., Zhang Y., Zhao J. A review of biochar-based composites for wastewater treatment. Environmental Pollution. 2020. Vol. 265. Article 114617. DOI: 10.1016/j.envpol.2020.114617.

Published

2025-08-27

How to Cite

Krayushkina, K., & Bondarchuk, V. (2025). ANALYSIS OF THE POSSIBILITY OF USING BIOCHAR IN ASPHALT CONCRETE. Theory and Practice of Design, (36), 54–64. https://doi.org/10.32782/2415-8151.2025.36.5

Issue

Section

АRCHITECTURE AND CONSTRUCTION