The choice of investment portfolios under uncertainty based on metal-ods and of models of fuzzy linear programming in the tensor basis

Authors

  • Ю. І. Мінаєва Київський національний університет будівництва і архітектури

DOI:

https://doi.org/10.18372/2073-4751.3.6442

Abstract

The problems of solving fuzzy linear programming representation by-resistivity parameters of fuzzy model tensors of rank 2. The possibility of communication solution of this class of problems at the level of the set clear tasks of linear programming created for the 1-th invariants and tensor norms, modeling fuzzy pa-spectra

References

Markowitz H. Portfolio Selection // Journal of Finance, vol.VII, №1, March 1952.Режим доступу: http://cowles.econ. yale. edu/P /cp/ p00b/ p0060.pdf.

Недосекин А. О. Оптимизация фондового портфеля: новый век новые идеи. Режим доступу: http://sedok. narod.ru/s_files/PF_Article_4.zip.

Inuiguchi M., Ram J. Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem// M.Inuiguchi, J.Ram, Fuzzy Sets and Systems 111 (2000). Р. 3–28.

Inuiguchi M., Sakawa M., Kume Y. The usefulness of possibilistic programming in production planning problems, Int. J. Prod. Economics 33 (1994). – P. 45–52.

Bellman R.E. Decisionmaking in a fuzzy environment/ R.E.Bellman, L.A.Zadeh, Management Sci. 17 (1970). – P. 141–164.

Tanaka H., Okuda T., Asai K. On fuzzy mathematical programming,// H.Tanaka, T.Okuda, K.J.Asai, Cybernet. 3 (1974). – P. 37–46.

Zimmermann H.-J. Description and optimization of fuzzy systems, Int. J// H.J Zimmermann, General Systems 2 (1976). – P. 209–215.

Zimmermann H.J. Fuzzy programming and linear programming with several objective functions,// H.J Zimmermann, Fuzzy Sets and Systems 1 (1978). – P. 45–55.

Dubois D. Linear programming with fuzzy data, in: J.C. Bezdek (Ed.) P., Analysis of Fuzzy Information, vol. III: Applications in Engineering and Science,// D.Dubois, CRC Press, Boca Raton, FL, 1987. – Р. 241– 263.

Dubois D. Ranking fuzzy numbers in the setting of possibility theory, Inform.//D.Dubois, H. Prade, Sci. 30 (1983). – P. 183–224.

Zadeh L.A. Fuzzy sets as a basis for a theory of possibility,// L.A. Zadeh, Fuzzy Sets and Systems 1 (1978). – P. 3–28.

Dubois D. Possibility Theory: An Approach to Computerized Processing of Uncertainty// D.Dubois, H.Prade, Plenum Press, New York, 1988.

Negoita C.V. On considering imprecision in dynamic linear programming, Economic Comput. Economic Cybernet// C.V.Negoita, S.Minoiu, E.Stan, Stud. Res. 3 (1976). – P. 83–95.

Orlovsky S.A. On formalization of a general fuzzy mathematical programming problem // S.A. Orlovsky, Fuzzy Sets and Systems 3 (1980). – P. 311- 321.

Orlovsky S.A. Decisionmaking with a fuzzy preference relation // S.A. Orlovsky, Fuzzy Sets and Systems 1 (1978). – P. 155–167.

Fuller R. Fuzzy reasoning for solving fuzzy mathematical programming problems // R.Fuller, H. J. Zimmermann Fuzzy Sets and Systems 60(1993). – Р. 121-133.

Allahviranloo T. Solving Fully Fuzzy Linear Programming Problem by the Ranking Function. // T.Allahviranloo, F.F.Lotfi,. M.Kh. Kiasary, N.A.Kiani and L.Alizadeh.,Applied Mathematical Sciences, Vol. 2, 2008, no. 1. – Р. 19 – 32.

Gasimov R. N. Solving Fuzzy Linear Programming Problems with Linear Membership Functions.//R.N. Gasimov, K. Yenilimez Turk J Math. 26 (2002). – Р. 375–396.

Shaocheng, T. Interval number and Fuzzy number linear programming // T.Shaocheng, Fuzzy Sets and Systems 66 (1994). – Р. 301-306.

Минаев Ю.Н., Филимонова О.Ю. Мягкие вычисления на основе тензорных моделей неопределенности. Часть 1 – тензорпеременная в системе нечетких множеств. // Электронное моделирование ИПМЭ НАН Украины, № 1, т.30, – C. 43 – 58.

Минаев Ю.Н., Филимонова О.Ю. Мягкие вычисления на основе тензорных моделей неопределенности. Часть 2-нечеткая математика в тензорном базисе. //Ю.Н. Минаев, О.Ю. Филимонова., Электронное моделирование ИПМЭ НАН Украины, № 2, т.30, . – с 29. -54.

Published

2010-09-14

Issue

Section

Статті