ASSESSMENT OF THE TECHNICAL CONDITION OF STEEL–REINFORCED CONCRETE FLOORS OF WORKING TOWERS OF GRAIN STORAGE FACILITIES
DOI:
https://doi.org/10.32782/2415-8151.2025.38.2.20Keywords:
steel-reinforced concrete floors, composite structures, grain elevator towers, non-destructive testing, technical condition assessment, thermographic inspection, Schmidt hammer testing, core sampling, adhesion defects, corrosion detection, quality control, structural reliability, separator floors, Nelson stud connectors, construction defectsAbstract
This paper examines the technical condition assessment of steel-reinforced concrete floors in grain elevator working towers through comprehensive inspection methods applied prior to commissioning. The research focuses on evaluating construction quality, identifying defects, and validating structural integrity using advanced non-destructive testing techniques. Particular attention is given to detecting hidden imperfections such as voids, adhesion failures, and early-stage corrosion that may compromise long-term performance and safety under operational dynamic loads from grain cleaning equipment. Purpose. The aim of this study is to develop and apply an integrated approach for assessing the technical condition of steel-reinforced concrete composite floors in elevator separator levels, combining multiple non-destructive testing methods to ensure structural reliability before operational use. Methodology. The study employed a multi-stage inspection program including preliminary project documentation analysis, detailed visual inspection with photographic documentation, and instrumental surveys. Key non-destructive testing methods applied include optical-visual inspection, Schmidt hammer rebound testing for concrete compressive strength evaluation, crack detection and classification, core sampling for laboratory analysis of concrete strength and density, reinforcement corrosion assessment, and infrared thermography for detecting hidden defects and thermal anomalies indicating adhesion failures or material discontinuities. Results. Measurements at twelve control points confirmed concrete slab thickness compliance with design specifications of 150 mm (±5 mm tolerance). Visual inspection identified isolated micro-cracks up to 0.2 mm wide near equipment fastening zones and structural joints. Thermographic surveys detected localized thermal anomalies around Nelson stud connectors, suggesting potential adhesion weaknesses or initial corrosion. Laboratory testing of core samples verified concrete class C25/30 and density approximately 2400 kg/m³, with no significant reinforcement corrosion observed. Overall technical condition was assessed as satisfactory, with localized defects requiring monitoring. Scientific novelty. This work presents an integrated diagnostic methodology combining thermal imaging with traditional non-destructive testing techniques specifically tailored for steel-concrete composite floors in high-vibration industrial environments. Practical relevance. The developed methodology enables informed decision-making regarding maintenance priorities and repair strategies, contributing to enhanced safety, durability, and operational reliability of grain elevator infrastructure. Results provide practical guidelines for quality control during construction and commissioning phases of steel-reinforced concrete floors in agricultural and industrial facilities.
References
Bakulin Ye.A., and Bakulina V.M. Classification methods of civil buildings reconstruction. Theoretical and scientific foundations of engineering: collective monograph. Boston: Primedia eLaunch. 2020. P. 70–96.
Barabash M., Kostyra N., Maksymenko V. Modeling of building structures resistance to collapse failure from explosive impact. International Scientific Applied Conference Problems of Emergency Situations (PES 2024). Vol. 156. P. 65–74. DOI: https://doi.org/10.4028/p-CSaY06
Barabash M.S., Kostyra N.O., Pysarevskiy B.Y. Strength-strain state of the structures with consideration of the technical condition and changes in intensity of seismic loads. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 708. 012044. https://doi.org/10.1088/1757-899X/708/1/012044
Dmytrenko E.A., Yakovenko I.A., Fesenko O.A. Strength of excentrically tensioned reinforced concrete structures with small eccentricities by normal sections. Scientific Review – Engineering and Environmental Sciences. 2021. Vol. 30(3). Р. 424–438. https://doi.org/10.22630/PNIKS.2021.30.3.36.
Hasenko A.V. Deformability of bends continuous three-span preliminary self-stressed steel concrete slabs. Academic journal. Industrial Machine Building, Civil Engineering. 2021. № 1(56). P. 135–141. DOI: https://doi.org/10.26906/znp.2021.56.2518
Hasenko A.V. Previous self-stresses creation methods review in bent steel reinforced concrete structures with solid cross section. Industrial Machine Building, Civil Engineering. 2021. № 2(57). P. 82–89. DOI: https://doi.org/10.26906/znp.2021.57.2589
Izbash M.Yu. Reducing costs of prestressed rein-forcement in locally pressed steel-reinforced concrete bent structures. Communal management of cities. Series: Tech-nical sciences and architecture. 2008. P. 15–23.
Kostyra, N.O., Malyshev, O.M., and Bakulina, V.M. Features of technical inspection and certification of commissioned construction objects. Machinery & Energetics. Journal of Rural Production Research. 2019. Vol. 10, No. 1. P. 165–169. http://dx.doi.org/10.31548/machenergy2019.01.165.
Meléndez C., Miguel P.F., and Pallarés L. A simplified approach for the ultimate limit state analysis of three-dimensional reinforced concrete elements. Engineering Structures. 2023. Vol. 123. P. 330–340.
Masud, N. Calculation of Compressed and Bent Steel-Concrete Composite Structures in Retained Formwork. Scientific Papers of UkrDUZT, 2017. P. 27–34.
Ramirez-Garcia A. T., Hale W. M., Floyd R. W., and Martí-Vargas, J. R. Effect of concrete compressive strength on transfer length. Structures. 2016. Vol. 5. P. 131–140.
Semko O.V., Bibyk D.V., Voskobiynyk O.P., Semko V.O. Experimental studies of a steel-reinforced concrete beam with a span of 13.5 m. Resource-Economic Materials, Constructions, Buildings and Structures. Vol. 21. 2021. P. 323–330.
Skrebnieva D.S. Numerical Methods for Calculating the Stress-Strain State of Combined Plating Elements from Profiled Sheeting. Problems of Urban Environment Development: Scientific and Technical Collection. 2018. Issue 1(20). P. 121–128.
Wang K., Yuan S.F., Cao D.F., and Zheng W.Z. Experimental and numerical investigation on frame structure composed of steel reinforced concrete beam and angle-steel concrete column under dynamic loading. International Journal of Civil Engineering. 2015. Vol. 13. P. 137–147.
Yakovenko I. A., Dmytrenko Ye. A. Influence of reinforcement parameters on the width of crack opening in reinforced concrete. Achievements of Ukraine and EU countries in technological innovations and invention: collective monograph. Riga : Izdevnieciba Baltija Publishing. 2022. Р. 510–536. https://doi.org/10.30525/978-9934-26-254-8-18
Бакулін Є.А., Яковенко І.А., Бакуліна В.М. Визначення параметрів напружено-деформованого стану споруди башти силосу та її конструктивних елементів за наслідками руйнування. Досягнення України та країн ЄС у сфері технологічних інновацій та винахідництва : колект. монографія. Рига: Izdevnieciba Baltija Publishing. 2022. С. 1–43. https://doi.org/10.30525/978-9934-26-254-8-1
Барабаш М.С., Костира Н.О., Томашевський А.В. Визначення напружено-деформованого стану та міцності пошкоджених несучих конструкцій інструментами ПК «Ліра−САПР». Український журнал будівництва та архітектури. 2022. № 1(007). C. 7–14. DOI: https://doi.org/ 10.30838/J.BPSACEA.2312.220222.7.827
ДБН В.2.6-160:2010. Композитні конструкції зі сталі та бетону. Загальні положення. Київ : Міністерство регіонального розвитку України, 2011. 20 с.
Дорогова О.В., Сазонова І.Р., Стороженко Л.І. Нове в проектуванні залізобетонних та сталезалізобетонних конструкцій. Будівельні конструкції. Вип. 78(1). 2013. С. 3–13.
ДСТУ-Н Б EN 1994-1-2:2012. Єврокод 4. Проектування композитних сталебетонних конструкцій. Частина 1-2. Загальні положення. Проектування вогнестійкості. Київ : Держспоживстандарт України, 2012. 45 с.
Костира Н.О., Малишев О.М., Бакуліна В.М. Особливості технічного обстеження та паспортизації прийнятих в експлуатацію об’єктів будівництва. Machinery & Energetics. Journal of Rural Production Research. 2019. Vol. 10. № 1. P. 165–169. http://dx.doi.org/10.31548/machenergy2019.01.165
Костира Н.О., Бакуліна В.М. Особливості технічного обстеження об’єктів прилеглих до існуючої забудови. Будівельні конструкції. Теорія і практика. 2022. № 12. С. 105–114. https://doi.org/10.32347/2522-4182.12.2023.105-114
Сколибог О.В. Розрахунок згинальних сталезалізобетонних елементів деформаційним методом. Збірник наукових праць (Галузеве машинобудування, будівництво). 2005. Вип. 16. С. 153–159.











