ІNTEGRATION OF BIONIC TECHNOLOGIES INTO INDUSTRIAL DESIGN OF PROSTHESES: BETWEEN AESTHETICS AND FUNCTIONALITY
DOI:
https://doi.org/10.32782/2415-8151.2025.38.1.19Keywords:
bionic prosthesis, upper and lower limbs, implantation, reinnervation, electromyography, brain control, osteointegration, feedbackAbstract
The article considers the impact of modern biotechnologies on the process of designing prostheses using industrial design tools. The design and functional features of bionic prostheses are outlined, modern control and sensory feedback technologies in bionic prostheses are analyzed to determine their impact on functionality and user experience. Attention is paid to innovative materials and new design solutions that allow reducing weight, increasing comfort and aesthetic appeal of prostheses. The influence of aesthetic parameters on the perception and use of prostheses among different groups of users is revealed, taking into account psychological and social aspects. Conceptual approaches to designing bionic prostheses are defined, which are based on a combination of a high level of functionality and individualized aesthetics. Purpose. To investigate and substantiate the integration of bionic innovations into the design of prostheses, which will ensure an increase in the quality of life of users and promote their social integration, which is associated with the growth of social consciousness. Methodology. Analytical, sociocultural, structural approaches, as well as theoretical research methods were applied. Results. The main aspects and approaches of industrial design of bio-prostheses were determined. The relationship between the development of society, technological progress and the means and principles of modern design was revealed. Scientific novelty. The expected results include the creation of a comprehensive model of integration of bionic technologies into the design of prostheses, which will allow to increase their functionality, comfort and visual appeal. Practical relevance. The results of the study can be used by teachers of art education institutions specializing in “Industrial Design” in the educational process for the development of methodological documentation and the formulation of practical tasks.
References
Avrunin, O.H., Selivanova, K.H., Tymkovych, M.Iu., & Nosova, Ya.V. (2025). Mizhnarodnyi dosvid vykorystannia prohramnoho zabezpechennia FLYSHAPE dlia indyvidualizovanoho tryvymirnoho modeliuvannia proteziv nyzhnikh kintsivok [International Experience in Using FLYSHAPE Software for Personalized 3D Modeling of Lower Limb Prostheses]. Proceedings from Mizhnarodna naukovo-tekhnichna konferentsiia «Informatsiini tekhnolohii v metalurhii ta mashynobuduvanni» – International Scientific and Technical Conference «Information Technologies in Metallurgy and Mechanical Engineering». (pp. 460–467). https://doi.org/10.34185/1991-7848.itmm.2025.01.082 [in Ukrainian].
Ivanytska, A. (n.d.). Stvorennia proteziv za dopomohoiu 3d modeliuvannia [Prosthesis Creation Using 3D Modeling]. Retrieved from https://ur.knute.edu.ua/server/api/core/bitstreams/795a0c63-7aa6-4183-a848-79d4b7d749b5/content [in Ukrainian].
Meshchaninov, S.K., Spivak, V.M., & Orlov, A.T. (2015). Elektronni metody i zasoby biomedychnykh vymiriuvan [Electronic Methods and Devices for Biomedical Measurements]. Kyiv : Kafedra [in Ukrainian].
Popadiukha, Yu. (2017). Osoblyvosti bionichnykh proteziv verkhnikh kintsivok [Features of Bionic Upper Limb Prostheses]. Molodizhnyi naukovyi visnyk Skhidnoievropeiskoho natsionalnoho universytetu imeni Lesi Ukrainky – Youth Scientific Bulletin of Lesya Ukrainka Eastern European National University, 25, 26–42. Retrieved from https://sportvisnyk.vnu.edu.ua/index.php/sportvisnyk/article/view/194 [in Ukrainian].
Khudetskyi, I.Yu., Antonova-Rafi, Yu.V., Melnyk, H.V., & Snitsar, Ye.V. (2021). Protezuvannia ta shtuchni orhany [Prosthetics and Artificial Organs]. Kyiv: KPI im. Ihoria Sikorskoho [in Ukrainian].
Seminska, N.V., Musiienko, O.S., Slobodianiuk, I.V., Belevets, K.S., Stepanova, A.A., & Shytikova, N.S. (2024). Vyhotovlennia proteziv nyzhnikh kintsivok: vyklyky, analiz ta mozhlyvi rishennia [Fabrication of Lower Limb Prostheses: Challenges, Analysis, and Potential Solutions]. Biomedychna inzheneriia i tekhnolohiia – Biomedical Engineering and Technology, 14(2). https://doi.org/10.20535/2617-8974.2024.14.303997 [in Ukrainian].
Ulberh, Z.R., Horchakova, N.A., & Chekman, I.S. (2013). Biomimetyka ta biomimetychni materialy: medyko-sotsialnyi aspekt [Biomimetics and Biomimetic Materials: Medical and Social Aspect]. Ukrainskyi medychnyi chasopys – Ukrainian Medical Journal, 3, 35–41. Retrieved from http://nbuv.gov.ua/UJRN/UMCh_2013_3_10 [in Ukrainian].
Fundovnyi, D.V., & Khynevych, R.V. (2024). Futurystychnyi fashion-protez: peretyn mystetstva ta tekhnolohii v 3D motion-dyzaini [Futuristic Fashion Prosthesis: The Intersection of Art and Technology in 3D Motion Design]. Proceedings from VI International Scientific and Theoretical Conference «Advanced discoveries of modern science: experience, approaches and innovations». (pp. 112–117). Amsterdam, The Netherlands : International Center of Scientific Research. Retrieved from https://er.knutd.edu.ua/handle/123456789/29365 [in Ukrainian].
Shyndyruk, V.D. (2024). Rozrobka prohramnoho zastosunku dlia heneratsii bionichnykh 3D-modelei proteziv na osnovi mashynnoho navchannia [Development of a Software Application for Generating Bionic 3D Models of Prostheses Based on Machine Learning]. Proceedings from naukovo-tekhnichna konferentsiia holovnoho tsentru vykhovnoi roboty «Molod v nautsi: doslidzhennia, problemy, perspektyvy» – Scientific and Technical Conference of the Main Center for Educational Work «Youth in Science: Research, Challenges, and Prospects». Vinnytsia. Retrieved from https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/43224/19958-70329-1-PB.pdf?sequence=1&isAllowed=y [in Ukrainian].
Bao, J. (2025). Design and Function of Lower-Limb Prosthetics Based on Biomechanics and Bionic Simulation Using Deep Learning. Applied and Computational Engineering, 33(1), 192–196. https://doi.org/10.54254/2755-2721/2025.20702. [in English].
Dogahe, M., Mahan, M., Zhang, M., Aliabadi, S., Rouhafza, A., Karimzadhagh, S. et al. (2025). Advancing Prosthetic Hand Capabilities Through Biomimicry and Neural Interfaces. Neurorehabilitation and Neural Repair, 39(6), 481–494. https://doi.org/10.1177/15459683251331593. [in English].
Guo, K., Lu, J., Wu, Y., Hu, X., & Yang, H. (2024). The Latest Research Progress on Bionic Artificial Hands. Micromachines, 15(7), 891. https://doi.org/10.3390/mi15070891. [in English].
Guo, T., Chen, X., Wang, Y., & Chang, R. (2024). Large Language Model Based Multi-Agents: A Survey of Progress and Challenges. Proceedings from Thirty-Third International Joint Conference on Artificial Intelligence. (pp. 8048–8057). Jeju, Korea. Retrieved from https://www.ijcai.org/proceedings/2024/0890.pdf https://arxiv.org/pdf/2402.01680. [in English].
Habert, S.G.G. (2018). Multi-Modal Visualization Paradigms for RGBD Augmented X-ray Imaging. Thesis. Technische Universität München. Retrieved from https://mediatum.ub.tum.de/doc/1378637/910731.pdf. [in English].
Li, P., Ali, H., Cheng, W., Yang, J., & Tee, B. (2020). Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 5(3). https://doi.org/10.1002/admt.201900856. [in English].
Marinelli, A., Boccardo, N., Tessari, F., Di Domenico, D., Caserta, G., Canepa, M. et al. (2022). Active Upper Limb Prostheses: a Review on Current State and Upcoming Breakthroughs. Progress in Biomedical Engineering, 5, 012001. https://doi.org/10.1088/2516-1091/acac57. [in English].
Nagamachi, M. (1995). Kansei Engineering: A New Ergonomic Consumer-Oriented Technology for Product Development. International Journal of Industrial Ergonomics, 15(1), 3–11. https://doi.org/10.1016/0169-8141(94)00052-5. [in English].
Schneidereit, D. (2021). Novel Opto-Biomechatronics System Technologies in the Cardioand Musculoskeletal Environment of Medical and Life Sciences. Doctoral Thesis. Retrieved from https://www.researchgate.net/publication/348960515_Novel_Opto-Biomechatronics_System_Technologies_in_the_Cardio-_and_Musculoskeletal_Environment_of_Medical_and_Life_Sciences. [in English].
Triono, A., Darsin, M., Fathurrahman, A., Mulyadi, S., & Ilminnafik, N. (2022). Optimization of the Structure of Bionic Finger Segment Prosthesis Using Generative Design. F1000Research, 11, 613. https://doi.org/10.12688/f1000research.109230.1. [in English].











