INNOVATIVE SOLUTIONS IN ARCHITECTURE: 3D PRINTING AS A TOOL FOR OPERATIONAL CONSTRUCTION IN WARTIME
DOI:
https://doi.org/10.32782/2415-8151.2025.38.2.16Keywords:
3D printing, rapid construction, modular architecture, crisis technol- ogies, military conditions, innovative materialsAbstract
The purpose of the study is to identify the prospects and limitations of using 3D printing technology for the rapid construction of architectural objects in wartime conditions and to outline the possibilities for its implementation in Ukrainian practice. The research methodology is based on a comprehensive approach that combines analysis of current scientific literature, study of international experience in the application of 3D printing in architecture, expert assessments of technological capabilities and materials, as well as analysis of the prospects and limitations of implementing this technology in wartime conditions in Ukraine. The use of comparative and systematic analysis made it possible to identify the key factors in the effectiveness of 3D printing for rapid construction, as well as to outline ways of integrating this technology into Ukrainian architectural practice. Results. 3D printing technology in architecture is considered one of the most promising innovations capable of ensuring a rapid response in crisis situations. Its application allows minimizing the expenditure of time, resources, and human labor, which is especially important in wartime, when there is an urgent need to create protective structures, medical centers, residential modules, and other critical infrastructure facilities. The article discusses the current state of development of 3D printing technologies in architecture, their technical capabilities, and examples of their use around the world. Particular attention is paid to the potential of this technology for Ukraine, in particular in the process of rapid construction of civil protection facilities, shelters, and temporary living spaces. The advantages of 3D printing are analyzed–high speed of construction, material savings, environmental friendliness, adaptability of design solutions–as well as limitations: regulatory barriers, equipment cost, and material durability. The scientific novelty of the article lies in a comprehensive study of the possibilities of using 3D printing specifically in the context of the military conflict in Ukraine, which allows assessing its potential for the rapid restoration of residential and social infrastructure. For the first time, the advantages, limitations, and technological aspects of 3D printing in crisis situations have been systematically analyzed, with practical recommendations for its implementation in Ukrainian construction practice. Practical relevance. The results of this study can become an important element in increasing the stability and security of the state in wartime and post-war conditions, forming a new paradigm of construction focused on speed, flexibility, and innovation.
References
Бутко К. Скорочення витрат, економія часу та зменшення відходів – чи може 3D-друк змінити архітектуру житлових будинків Прагматика медіа. 2023. URL: https://pragmatika.media/skorochennia-vytrat-ekonomiia-chasu-ta-zmenshennia-vidkhodiv-chy-mozhe-3d-druk-zminyty-arkhitekturu-zhytlovykh-budynkiv/ (дата звернення: 03.10.2025)
Використання 3D-друку в будівництві: можливості та перспективи. Інтернет-видання Полтавщина. URL: https://blog.poltava.to/atlant/16536/ (дата звернення: 03. 10. 2025)
Іванов-Костецький С., Гуменник І., Воронкова І. Шляхи застосування технологій 3D-друку у створенні сучасних об’єктів архітектури. Вісник Національного університету «Львівська політехніка». Серія: «Архітектура». 2022. № 1(7). С. 54–64. DOI: https://doi.org/10.23939/sa2022.01.054
Кірик К.Р., Журавська Н.Є., Стефанович П.І. Перспективи розвитку 3D будівництва та його вплив на навколишнє середовище. SWorld Journal. 2023. Вип. 18(1). С. 77–87. DOI: https://doi.org/10.30888/2663-5712.2023-18-01-076
Орисенко О.В., Нестеренко М.М., Шокало А.В., Нестеренко Т.М. Аналіз конструкцій принтерів для 3D-друку в будівництві та архітектурі. Збірник наукових праць. Галузеве машинобудування, будівництво. 2021. Вип. 2(57). С. 105–110. URL: https://reposit.nupp.edu.ua/handle/PoltNTU/10906
Слєпцов І., Гудкова Н. Інновації в архітектурі України: 3D-друковані будинки. І Всеукраїнська конференція здобувачів вищої освіти і молодих учених «Інноватика в освіті, науці та бізнесі». 2020. С. 412–418. URL: https://er.knutd.edu.ua/bitstream/123456789/17490/1/Innovatyka2020_ P412-418.pdf
Шилоткач М., Григорчук О. 3D-друк у будівництві: нова ера архітектури. Фізика – основа цифровізації суспільства та сталого інноваційного розвитку техніки і технологій : матеріали ІІ Всеукраїнської, з міжнародною участю, молодіжної науково-практичної онлайн конференції. 2025. С. 705–708. URL: https://repositary.knuba.edu.ua/handle/123456789/15655
3D-друк в архітектурі в 2025 році: тренди та досвід Блог Еріс 3D. URL: https://epic3d.com.ua/3d- druk-v-arkhitekturi-2025/ (дата звернення: 04.10.2025)
A house 3D printed in 58 hours is donated to a soldier in Ukraine 3Dnatives. URL: https://www.3dnatives.com/en/house-3d-printed-ukraine-260720245/ (дата звернення: 04.10.2025)
Banihashemi S., Shahrabi Farahani H., Ostad Taghizadeh L. 3D printing in construction: sustainable technology for rapid housing. Journal of Cleaner Production. 2025. Vol. 420. P. 120–135. DOI: https://doi.org/10.1007/s40964-025-01314-y
Bos F.P., Wolfs R.J.M., Ahmed Z.Y., Salet T.A.M. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping. 2016. Vol. 11(3). P. 209–225. DOI: https://doi.org/10.1080/17452759.2016.1209867
Buswell R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research. 2018. Vol. 112. P. 37–49. DOI: https://doi.org/10.1016/j.cemconres.2018.05.006
De Schutter G., Lesage K., Mechtcherine V., Nerella V. N., Habert G., Agusti-Juan I. Vision of 3D printing with concrete – technical, economic and environmental potentials. Cement and Concrete Research. 2018. Vol. 112. P. 25–36. URL: http://hdl.handle.net/1854/LU-8615719
Gebler M., Uiterkamp A.J.M.S., Visser C. 3D printing: Environmental, economic and social implications. Energy Policy. 2014. Vol. 74. P. 158–167. URL: https://econpapers.repec.org/scripts/redir.pf?u=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.enpol.2014.08.033;h=repec:eee:enepol:v:74:y:2014:i: c:p:158-167
Khoshnevis B. Automated construction by contour crafting – related robotics and information technologies. Automation in Construction. 2004. Vol. 13(1). P. 5–19. DOI: https://doi.org/10.1016/j.autcon.2003.08.012
Perrot A. 3D printing of earth-based materials: Processing aspects. Construction and Building Materials. 2019. Vol. 172. P. 670–676. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.017
Salet T. A. M., Ahmed Z. Y., Bos F. P., Laagland H. L. M. Design of 3D printed concrete structures. Materials and Design. 2018. Vol. 162. P. 453–461. DOI: https://doi.org/10.1080/17452759.2018.1476064
Shakor P., Nejadi S., Paul G., Malek S. Review of emerging additive manufacturing technologies in civil engineering. Rapid Prototyping Journal. 2019. Vol. 25(6). P. 1108–1123. DOI: https://doi.org/10.3389/fbuil.2018.00085
Tay Y. W. D., Panda B., Paul S. C., Noor Mohamed N. A., Tan M. J., Leong K. F. 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping. 2017. Vol. 12(3). P. 261–276. DOI: https://doi.org/10.1080/17452759.2017.1326724
Wangler T., Lloret E., Reiter L., Hack N., Gramazio F., Kohler M., Flatt R. J. Digital concrete: opportunities and challenges. RILEM Technical Letters. 2016. Vol. 1. P. 67–75. DOI: https://doi.org/10.21809/rilemtechlett.2016.16
Zhong H. 3D printing geopolymers: A review. Resources, Conservation & Recycling. 2022. Vol. 178. P. 106–118. DOI: https://doi.org/10.1016/j.cemconcomp.2022.104455











