EXPANDED CLAY CONCRETE AS A MATERIAL FOR MODERN AND RESTORATION CONSTRUCTION

Authors

DOI:

https://doi.org/10.32782/2415-8151.2025.38.2.2

Keywords:

lightweight concrete, expanded clay concrete, expanded clay, construction, reconstruction, restoration of buildings, porous aggregates, energy efficiency, thermal insulation properties, sound insulation, sustainability

Abstract

The article examines the features of using lightweight concrete and expanded clay concrete in construction, reconstruction, and restoration of buildings. The relevance of the research is determined by the rising cost of energy resources and the need to reduce energy consumption not only at the stage of material production but also during the operation of buildings. The historical experience of using lightweight concretes – from the Roman Empire to modern architectural objects – is analyzed. A classification of lightweight concretes by structure and function is presented, along with their physical and mechanical characteristics. Particular attention is paid to expanded clay and expanded clay concrete as environmentally friendly materials with high thermal insulation, sound insulation, and structural properties. Examples of their application in modern construction are considered, including individual residential houses, public buildings, historical monuments, and infrastructure facilities. It is shown that the use of expanded clay concrete contributes to reducing structural weight, shortening construction time, lowering energy consumption, and increasing the durability of buildings. Regulatory requirements for the thermal resistance of enclosing structures are summarized in accordance with Ukrainian DBN and European standards. The study highlights the prospects of applying lightweight concretes in the context of energy-efficient and sustainable construction. Purpose: to substantiate the feasibility of using lightweight concretes, in particular expanded clay concrete, in modern construction, reconstruction, and restoration of buildings; to analyze their physical, mechanical, and thermal insulation characteristics; and to determine their impact on energy efficiency, durability, and sustainability of buildings. Methodology. The research is based on the analysis of regulatory documents (DBN, DSTU), a review of scientific publications, and practical case studies of using expanded clay concrete in construction and reconstruction. A comparative method is applied to evaluate its characteristics relative to traditional materials, as well as generalization of application results in modern and historical buildings. Results. The analysis of scientific sources, regulatory framework, and practical examples demonstrated that expanded clay concrete has significant potential in modern construction, reconstruction, and restoration of buildings. The study confirmed that expanded clay concrete meets the requirements of current Ukrainian DSTU and DBN standards and can become one of the key materials in implementing energy-efficient and sustainable construction principles. Scientific novelty. The article systematizes the advantages of expanded clay concrete as an energy-efficient and eco-friendly material, summarizes regulatory requirements (DSTU, DBN) for its properties, and outlines prospects for its application in construction, reconstruction, and restoration, with emphasis on reducing structural weight and preserving historical authenticity. Practical relevance. The obtained results can be applied in the design and implementation of construction and restoration projects for selecting optimal structural solutions with expanded clay concrete, ensuring reduced foundation loads, improved thermal and acoustic insulation, as well as saving material and energy resources.

References

Баранович Л., Баранович А. Бетон: історія виникнення та шлях його прогресу як передового будівельного матеріалу. Вісник Львівського національного університету природокористування. Серія «Архітектура та будівництво». Львів, 2024. С. 78–85. DOI: https://doi.org/10.31734/architecture2024.25.078.

Будівельні матеріали і конструкції підземних споруд. Основи розрахунку : навчальний посібник / уклад.: С.М. Стовпник, А.Л. Ган, Л.В. Шайдецька. Київ : КПІ ім. Ігоря Сікорського, 2019. 120 с. URL: https://ela.kpi.ua/server/api/core/bitstreams/a06196c6-a3b7-4147-8e88-c7123c62d807/content

Грицаєнко О.М., Попруга Д.В., Потабрик М.О. Теплоізоляційна штукатурка. Розвиток промисловості та суспільства : матеріали Міжнар. наук.-техн. конф. Кривий Ріг, 2022. С. 85. URL: https://www.knu.edu.ua/storage/files/2/Наука/Конференції/Конференції%202022/Розвиток/Тези%20конф.%20СТАЛИЙ%20РОЗВИТОК%20-%202022.pdf.pdf

ДБН В.2.6-31:2021. Теплова ізоляція та енергоефективність будівель. Київ : Мінрегіон України, 2022. 27 с. URL: https://e-construction.gov.ua/laws_detail/3075196638495507996

Дворкін Л.Й. Архітектурне матеріалознавство : підручник. Рівне : НУВГП, 2022. 560 с.

Дворкін Л.Й., Лаповська С.Д. Будівельне матеріалознавство : підручник. Рівне : НУВГП, 2016. 448 с.

Будівельне матеріалознавство : підручник / П.В. Кривенко та ін. Київ : Ліра-К, 2012. 624 с.

Осипенко В.І., Поздєєв С.В., Тищенко І.Ю. Будівельні матеріали та їхня поведінка за дії високих температур : навчальний посібник. Черкаси, 2011. 170 с. URL: https://er.chdtu.edu.ua/bitstream/ChSTU/3381/1/Kon-LM_cor_ispr1-5.pdf

Пащенко Т.М., Світла З.І. Будівельне матеріалознавство : навчальний посібник. Київ : Аграрна освіта, 2009. 434 с.

Сердюк В.Р. Тенденції виробництва керамзиту та використання керамзитобетону в сучасному будівництві. Вісник Вінницького політехнічного інституту. 2018. № 3. С. 14–22. URL: https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2224

Бетони на пористих заповнювачах у будівництві / І.А. Столевич та ін. Теорія та практика дизайну. 2024. № 32. С. 63–69. DOI: https://doi.org/10.32782/2415-8151.2024.32.8.

Bradecki T., Tofiluk A., Uherek-Bradecka B. Challenges in the design of prefabricated single-family buildings with expanded clay technology – selected architectural and environmental aspects. Civil and Environmental Engineering Reports. 2022. Vol. 32, No. 4. P. 323–344. DOI: https://doi.org/10.2478/ceer-2022-0061.

Camões A., Ferreira R.M. Technological evolution of concrete: from ancient times to ultra high performance concrete. In: Structures and Architecture / Cruz (Ed.). London : Taylor & Francis Group, 2010. URL: https://repositorium.sdum.uminho.pt/bitstream/1822/17654/1/ICSA2010_AC%26RMF_final.pdf (дата звернення: 14.04.2025).

Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Official Journal of the European Union. 2010. L 153. P. 13–35. URL: https://eur-lex.europa.eu/eli/dir/2010/31/oj/eng

Expanded shale, clay and slate institute. Reference Manual for the Properties and Applications of Expanded Shale, Clay and Slate Lightweight Aggregate. April 2007. 1484 р. URL: https://www.escsi.org/wp-content/themes/escsi/assets/images/0%20Reference%20Manual%20Cover%20Page%20Preface%20and%20TOC.pdf

Hubertova M., Hela R., Stavinoha R. Expanded clay thermo insulating concrete. Central Europe towards Sustainable Building. Material Efficiency. CESB10 Prague. 30 June – 2 July 2010. P. 1–8. https://www.cesb.cz/cesb10/papers/3_materials/098.pdf

Kaverin K., Bondarenko O., Anopko D., Levkivskyi D., Antoshchuk T. Modified high strength lightweight-aggregate concrete based on expanded clay: composition, structure, properties. Transfer of Innovative Technologies. 2023. Vol. 6, No. 1. P. 103–117. DOI: https://doi.org/10.32347/tit.2023.61.0103.

Steiger R.W. The history of concrete. Part 1: From portland cement to structural concrete. Concrete Journal. Aberdeen Publishing. July 1995. P. 584–587. URL: https://pita.ess.washington.edu/tswanson/wp-content/uploads/sites/9/2018/10/The-History-of-Concrete.pdf

Steiger R.W. The history of concrete. Part 2: From portland cement to structural concrete. Concrete Journal. Aberdeen Publishing. August 1995. P. 644–647. https://www.scribd.com/document/478629938/1995-b-Steiger-The-History-of-Concrete

Vijayalakshmi R., Ramanagopal S. Structural Concrete using Expanded Clay Aggregate: A Review. Indian Journal of Science and Technology. 2018. Vol. 11, No. 16. P. 1–12. DOI: https://doi.org/10.17485/ijst/2018/v11i16/121888.

Published

2025-11-20

How to Cite

Baranovych, L., & Baranovych, A. (2025). EXPANDED CLAY CONCRETE AS A MATERIAL FOR MODERN AND RESTORATION CONSTRUCTION. Theory and Practice of Design, 2(38), 16–22. https://doi.org/10.32782/2415-8151.2025.38.2.2

Issue

Section

Статті