STRESS-STRAIN STATE OF THE ELEVATOR WORKING TOWER FLOOR UNDER DYNAMIC LOADS

Authors

DOI:

https://doi.org/10.32782/2415-8151.2025.36.11

Keywords:

composite structures, grain elevator, dynamic loads, modal analysis, resonance, LIRA-FEM, steel–concrete systems, structural safety.

Abstract

Abstract. This paper examines the performance and stability of steel–concrete composite systems used in the working towers of grain elevator facilities, subjected to dynamic effects originating from grain cleaning equipment. The research centers on evaluating the structural response of elevator towers with separator floors formed either from steel-only frameworks or composite slabs incorporating concrete and profiled sheeting. Particular attention is given to resonance susceptibility and methods to enhance structural integrity under operational conditions. Purpose. The aim of the study is to analyze and compare the dynamic performance of different flooring systems in grain elevator towers – steel-only structures versus steel–concrete composite slabs – and to assess their susceptibility to resonance caused by grain cleaning equipment. Methodology. The study employed modal analysis of two flooring configurations using computational modeling tools. Natural frequencies and corresponding mode shapes were determined via LIRA-FEM for both static and dynamic analysis. Autodesk Revit was used to develop the structural models. Resonance risk was evaluated by comparing computed natural frequencies with the known 5 Hz operational frequency of grain cleaning machinery. Results. The analysis revealed that composite floor systems using profiled steel decking and concrete slabs significantly reduce vibration intensity compared to steelonly floors. Variations in concrete slab thickness and shear connector dimensions were tested, resulting in improved dynamic behavior and structural stability. The natural frequencies of both systems were benchmarked to evaluate resonance potential. Composite floors showed better alignment with safety requirements and machine stability under dynamic loads. Scientific novelty. The study introduces the application of steel–concrete composite floor systems with profiled decking as permanent formwork in grain elevator towers, highlighting their effectiveness in minimizing resonance effects. The research presents an original configuration that enhances structural performance and operational safety, laying the groundwork for further optimization of slab parameters in future investigations. Practical significance. The results of this research can be used to improve the design of grain elevator tower floors by selecting appropriate composite configurations. The tested systems showed better vibration damping and structural stability, which contributes to safer and more reliable operation of grain cleaning equipment. These findings support engineers in making informed decisions when designing dynamically loaded agricultural facilities.

References

Bakulin Ye.A., Bakulina V.M. Classification methods of civil buildings reconstruction. Theoretical and scientific foundations of engineering: collective monograph. Boston: Primedia eLaunch. 2020. P. 70–96.

Barabash M., Kostyra N., Maksymenko V. Modeling of building structures resistance to collapse failure from explosive impact. International Scientific Applied Conference Problems of Emergency Situations (PES 2024), Vol. 156, P. 65–74. DOI https://doi.org/ 10.4028/p-CSaY06

Barabash M.S., Kostyra N.O., Pysarevskiy B.Y. Strength-strain state of the structures with consideration of the technical condition and changes in intensity of seismic loads. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 708. 012044. https://doi.org/ 10.1088/1757-899X/708/1/012044

Fraile-Garcia E., Ferreiro-Cabello J., Martinez- Camara E., Jimenez-Macias E. Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs. Engineering Structures. 2016. Vol. 109, Р. 126–138.

Hasenko A.V. Deformability of bends continuous three-span preliminary self-stressed steel concrete slabs. Academic journal. Industrial Machine Building, Civil Engineering. 2021. № 1(56). P. 135–141. DOI https://doi.org/10.26906/znp.2021.56.2518

Hasenko A.V. Previous self-stresses creation methods review in bent steel reinforced concrete structures with solid cross section. Industrial Machine Building, Civil Engineering. 2021. №2(57). P. 82–89. DOI https://doi.org/10.26906/znp.2021.57.2589

Izbash M.Yu. Reducing costs of prestressed rein-forcement in locally pressed steel-reinforced concrete bent structures. Communal management of cities. Series: Tech-nical sciences and architecture. 2008. P. 15–23.

Kostyra N.O., Malyshev O.M., Bakulina V.M. Features of technical inspection and certification of commissioned construction objects. Machinery & Energetics. Journal of Rural Production Research. 2019. Vol. 10, No. 1, P. 165–169. http://dx.doi.org/10.31548/ machenergy2019.01.165.

Meléndez C., Miguel P.F., Pallarés L. A simplified approach for the ultimate limit state analysis of threedimensional reinforced concrete elements. Engineering Structures. 2023. Vol. 123. P. 330–340.

Masud N. Calculation of Compressed and Bent Steel-Concrete Composite Structures in Retained Formwork. Scientific Papers of UkrDUZT, 2017. P. 27–34.

Ramirez-Garcia A.T., Hale W.M., Floyd R.W., Martí-Vargas, J.R. Effect of concrete compressive strength on transfer length. Structures. 2016. Vol. 5. P. 131–140.

Semko O.V., Bibyk D.V., Voskobiynyk O.P., Semko V.O. Experimental studies of a steel-reinforced concrete beam with a span of 13.5 m. Resource-Economic Materials, Constructions, Buildings and Structures. 2021. Vol. 21. P. 323–330.

Skrebnieva D.S. Numerical Methods for Calculating the Stress-Strain State of Combined Plating Elements from Profiled Sheeting. Problems of Urban Environment Development: Scientific and Technical Collection. 2018. Issue 1(20), P. 121–128.

Wang K., Yuan S.F., Cao D.F., and Zheng W.Z. Experimental and numerical investigation on frame structure composed of steel reinforced concrete beam and angle-steel concrete column under dynamic loading. International Journal of Civil Engineering. 2015. Vol. 13. P. 137–147. [15] Бакулін Є.А., Яковенко І.А., Бакуліна В.М. Визначення параметрів напружено-деформованого стану споруди башти силосу та її конструктивних елементів за наслідками руйнування. Досягнення України та країн ЄС у сфері технологічних інновацій та винахідництва : колективна монографія. Рига : Izdevnieciba Baltija Publishing. 2022. С. 1–43. https:// doi.org/10.30525/978-9934-26-254-8-1 [16] Барабаш М.С., Костира Н.О., Томашев- ський А.В. Визначення напружено-деформованого стану та міцності пошкоджених несучих конструкцій інструментами ПК «Ліра−САПР». Український журнал будівництва та архітектури. 2022. № 1(007). C. 7–14. http://DOI:10.30838/J.BPSACEA.2312.220222.7.827

Грабовчак В.В., Ковальчук, О.Ю. Особливості використання рециркульованих бетонних конструкцій у складі бетонних сумішей. Теорія та практика дизайну. 2025. Вип. 34. С. 5–10. https://doi.org/ 10.32782/2415-8151.2024.34.1

ДБН В.2.6-160:2010. Композитні конструкції зі сталі та бетону. Загальні положення. Київ : Міністерство регіонального розвитку України, 2011. 20 с.

Дорогова О.В., Сазонова І.Р., Стороженко Л.І. Нове в проєктуванні залізобетонних та сталезалізобетонних конструкцій. Будівельні конструкції. 2013. Вип. 78(1). С. 3–13.

ДСТУ-Н Б EN 1994-1-2:2012. Єврокод 4. Проєктування композитних сталебетонних конструкцій. Ч. 1-2. Загальні положення. Проєктування вогнестійкості. Київ : Держспоживстандарт України, 2012. 45 с.

Сколибог О.В. Розрахунок згинальних сталезалізобетонних елементів деформаційним методом. Збірник наукових праць (Галузеве машинобудування, будівництво). 2005. Вип. 16. С. 153–159.

Downloads

Published

2025-08-27

How to Cite

Ponomarov, P. Y., & Kostyra, N. O. (2025). STRESS-STRAIN STATE OF THE ELEVATOR WORKING TOWER FLOOR UNDER DYNAMIC LOADS. Theory and Practice of Design, (36), 116–125. https://doi.org/10.32782/2415-8151.2025.36.11

Issue

Section

АRCHITECTURE AND CONSTRUCTION