ROBUST AUTOPILOTS BASED ON THE FUZZY MODEL REFERENCE LEARNING CONTROL
DOI:
https://doi.org/10.18372/2306-1472.29.1357Abstract
Fuzzy learning algorithm of unmanned aerial vehicle is considered in this paper. It allows real time self-tuning of parameters of the controller’s membership functions. The primary structure of the fuzzy controller is synthesized via “crisp” prototype based on the robust H2/H∞ -optimization. It is shown that obtained control algorithm possesses high level of performance and robustnessReferences
Lin C.F. Advanced Control Systems Design. PTR Prentice Hall Inc., Englewood Cliffs, New Jersey, 1994. – 664 p.
Passino K.M., Yurkovich S. Fuzzy Control. Addison-Wesley. – Menlo Park, Reading, Harlow, Berkley, Sidney, Bonn, Amsterdam, 1998. – 502 p.
Laine J.R., Passino K.M. Fuzzy model Reference Model Control // Journal of Intelligent and Fuzzy Systems. – 1996. – Vol. 4, N. 1. – P. 33–47.
Schram G., Kaymak U., Verbruggen H.B. Fuzzy Logic Control. Chapter 13. “Robust Flight Control. Design Challenge”. Springer-Verlag. – Berlin, Heidelberg, New York, 1997. – P. 135–148.
Schram G., Verbruggen H.B. A Fuzzy Control Approach. Сhapter 26 in the same issue. – P. 397–419.
Tunik A., Galaguz T., Xu Guo Dong. Design of Sub-optimal Robust Flight Control Systems for Small UAV. The 2nd World Congress “Aviation in the XXI Century Safety in Aviation”. – Kyiv: NAU, September 2005. – P. 1.70–1.79.
Tunik A.A., Abramovich E.A. Parametric Robust Optimization of the Digital Flight Control Systems // Proc. of the National Aviation University. – 2003. – N 2 (17). – P. 31–38.
McLean D. Automatic Flight Control Systems. – Prentice Hall Inc., Englewood Cliffs, 1990. – 593 p.
Tunik A.A., Ryu H., Lee H.C. Parametric Optimization Procedure for Robust Flight Control System Design // KSAS International Journal. – 2001. – Vol. 2, N. 2, Nov. – P. 95–107.
Skogestad S., Postlethwaite I. Multivariable Feedback Control. Analysis and Design. – John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore. – 1997. – 559 p.