ANALYTICAL CONSTRUCTION OF OPTIMUM CONTROL COMPUTER NETWORKS

Authors

  • Аліна Cтаніславівна Савченко National Aviation University
  • Юрій Борисович Моденов National Aviation University
  • Асія Сабірівна Климова National Aviation University
  • Ірина Вікторівна Чуба National Aviation University
  • Руслан Миколайович Куликовський National Aviation University

DOI:

https://doi.org/10.18372/2310-5461.44.14317

Keywords:

computer network, control system, optimization criterion, computing power

Abstract

This article is about developing a computer network control system. In order to synthesize the control system of a complex technical object - a computer network - it is advisable to use optimization methods based on the minimization of control quality functionals. The quality of the computer network control system depends on the type of optimization target functionality: speed, accuracy, amount of additional control actions (information signals), etc. The purpose of the work is to compare the optimal control systems for analytical design by different criteria. Analytical design of a computer network control system, optimized by the Letov-Kalman criterion and generalized work by A. Krasovsky showed the advantages of the latter method. The difficulties of the analytical method of the Letov-Kalman criterion are related to the large volume of necessary calculations. The problem of analytic construction by the criterion of generalized work is reduced to solving a linear matrix equation, while analytical construction by the Letov-Kalman criterion requires solving a nonlinear matrix equation. The complexity of the solution on the basis of the criterion of generalized work is significantly (approximately n / α times) less than in the synthesis by the Letov-Kalman method. This difference is particularly noticeable for high-dimensional objects such as computer networks. The paper presents the comparative characteristics of the required computing power for a control system designed according to the Letov-Kalman criterion and generalized work. Generalized work functionality is shown to have an advantage in computing power of approximately 104 op / s with the same number of network monitoring parameters. The dependences of the required computing power on the degree of sparse matrix of the network state matrix (for different modes of operation) are also analyzed.

Author Biographies

Аліна Cтаніславівна Савченко, National Aviation University

candidate of Technical Sciences, associate professor

Юрій Борисович Моденов, National Aviation University

candidate of Technical Sciences, associate professor

Асія Сабірівна Климова, National Aviation University

candidate of Technical Sciences, associate professor

Ірина Вікторівна Чуба, National Aviation University

candidate of Technical Sciences

Руслан Миколайович Куликовський, National Aviation University

student

References

Solutions for any kind of IT infrastructure. URL: https://www.zabbix.com (access date 12.11.2019)

Enterprise class open source network manage-ment. https://www.opennms.com (access date 25.09.2019)

Cisco Prime Infrastructure. URL: https://www. cisco. com /c/en/us/products/cloud-systems-management/ prime-infrastructure/index.html (access date 01.11.2019)

Network monitoring with granular visibility. URL: https://www.hpe.com/ru/ru/networking/management.html (access date 12.10.2019)

IBM Tivoli Monitoring. URL: https://www.ibm.com/support/knowledgecenter/SS3JRN_7.2.1/com.ibm.itm.doc_6.3fp2/welcome.htm (ac-cess date 06.11.2019)

Naumen Network Manager. URL: https://www.naumen.ru/products/network_manager/ (access date 12.09.2019)

Савченко А. С. Концептуальная модель си-стемы управления крупной корпоративной сетью. Проблеми інформатизації та управління. 2011. Вип.2(34). С. 120-128.

Красовский А. А. Основы теории авиационных тренажеров. М.: Машиностроение, 1995. 304 с.

Красовский А. А. Пилотажно-навигационные комплексы. Изд-во.: ВВИА им. Н. Е. Жуковского, 1975. 183 с.

Евсеева О. Ю., Ильяшенко Е. Н., Ткаче-ва Е. Б. Математическая модель и метод ком-плексного управления ресурсами транспортной программно-конфигурируемой сети. Проблемы телекоммуникаций. 2016. Т. 18. Вип. 1. C. 22–35.

Лебеденко Т. М., Мокряк А. А., Симонен-ко О. В., Черкасов А. В., Власенко А. О. Вдоско-налення та дослідження методу збалансованого управління чергами на інтерфейсах маршрутиза-торів телекомунікаційної мережі. Проблемы теле-коммуникаций. 2018. Т. 23. Вип. 2. C. 62-74. DOI: 10.30837/pt.2018.2.05.

RFC1213. URL: https://tools.ietf.org/html/ rfc1213 (access date 24.10.2019)

RFC2233. URL: https://tools.ietf.org/html/ rfc2233 (access date 24.10.2019)

Cisco Community. Networking Documents — OID List. URL: https://community.cisco.com/t5/net-working-documents/oid-list/ta-p/3117547 (access date 12.11.2019)

List of SNMP OID and MIB for Cisco. URL: https://ixnfo.com/cisco-snmp-oid-mib.html (access date 11.11.2019)

SNMP OID and MIB for interfaces. URL: https://ixnfo.com/spisok-snmp-oid-i-mib-dlya-interfeysov.html (access date 12.09.2019)

Published

2019-12-31

Issue

Section

Information technology, cybersecurity