ДОСЛІДЖЕННЯ ЗНОСОСТІЙКОСТІ ЕЛЕКТРОІСКРОВИХ ПОКРИТТІВ В УМОВАХ ВПЛИВУ АБРАЗИВУ
DOI:
https://doi.org/10.18372/0370-2197.3(100).17895Ключові слова:
працездатність, покриття, зношування, абразив, зносостійкістьАнотація
Проаналізовано причини руйнування деталей вузлів тертя повітряних суден і наземної авіаційної техніки, які виготовлені із сплавів на основі заліза, встановлено, що при експлуатації на їх робочих поверхнях розвиваються різноманітні процеси, а саме: абразивного зношування, схоплення, фретинг-корозії, втомного зношування. Проведено аналіз сучасних технологічних методів поверхневого зміцнення деталей машин, визначено перспективність електроіскрового легування (ЕІЛ) сплавів на основі заліза. Дослідження зносостійкості покриттів проводили за комплексною методикою, що включає металографічний, електронно-мікроскопічний, дюрометричний та інші методи аналізу фізико-механічних методів. Встановлено вплив матеріалів електрода на зносостійкість ЕІЛ покриттів. Зазначено практичні рекомендації для поверхневого зміцнення деталей авіаційної техніки, що працюють в умовах абразивного зношування.
Посилання
Solovjov V. І., Korotіn S. M., Korovіn І. P. Organіzacіja ekspluatacії bojovoї avіacіjnoї tehnіki. Pіdruchnik: K., NUOU, 2016, 216 s.
Іgnatovich S. R., Malenko V. N., Labunec V.F. Identifikacija poverhnostnoj prochnosti detalej uzlov trenija letatel'nyh apparatov. Problemy tribologii. 2007. №1. C. 11-14.
Bezzubec' S. V., Sorochan O. O. Analіz stanu ta perspekstiv rozvitku sistemi tehnіchnogo obslugovuvannja avіacії povіtrjanih sil zbrojnih sil Ukraїni. Zbіrnik naukovih prac' kafedri avіacії. Іnzhenerno-avіacіjne zabezpechennja. 2021. № 2(9). S. ІІ-1-10.
Kosteckij B. I. Poverhnostnaja prochnost' materialov pri trenii. K.: Tehnіka, 1976. 246s.
Mіkosjanchik O. O., Jakobchuk O. Є., Pedan Є. V., Berezіvs'kij N. M. Vpliv stupenja okislennja na protiznoshuval'nі vlastivostі avіacіjnih oliv. Problemi tertja ta znoshuvannja. 2023. 2 (99). S.4-13.6. Ilina O.A., Mikosianchyk O.O., Yashchuk О. P. et al. Tribomonitoring of the quality of aviation hydraulic oils according to lubricity and rheological indicators. Problems of Tribology. 2023. V. 28, No 1/107. P.34-40.
Arne F., Plante B., Samuels А., Savourey А. Take Care of Your Brakes. URL: https://safetyfirst.airbus.com/take-care-of-your-brakes/ (дата звернення: 14.09.2023).
Awang M., Khalili A.A., Pedapati S.R. A Review: Thin Protective Coating for Wear Protection in High-Temperature Application. Metals. 2020. 10. 42
Criou O. A350 XWB family & technologies. Presentation at Hamburg University of Applied Sciences. 2007. URL: https://www.fzt.haw-hamburg.de/pers/Scholz/dglr/hh/text_2007_09_20_A350XWB.pdf (дата звернення: 14.09.2023).
Faisal N., Cora Ö. N., Bekci M. L. et al. Defect Types. In: Sause M.G.R., Jasiūnienė E. (eds) Structural Health Monitoring Damage Detection Systems for Aerospace. Springer Aerospace Technology. Springer, Cham. 2021. Р.15-73.
Kutyinov V. F, Ionov A. A Ch. 1 specific features of composite-material structural design. In: Zagainov GI, Lozinolozinsky GE (eds) Composite materials in aerospace design. Chapman and Hall, 1996. ISBN 0412584700. Р. 1–117.
Gautier G., Faga M. G., Tebaldo, V. Impact Wear Resistance of Nanocomposite Coatings for Aircraft Components. Key Engineering Materials. 2019. Vol. 813. Р. 387-392.
Konoval V.P., Umanskii O.P., Panasyuk A.D., Lukyanchuk O.F. Effect of the chemical composition of electrode materials and deposition parameters on the properties of electrospark-deposited coatings. I. Mass transfer rate and coating composition. Powder Metallurgy and Metal Ceramics. 2014. Vol.53. No.1–2. P.31–39.
Verhoturov A. D., Muha I. M. Tehnologija jelektroiskrovogo legirovanija metallicheskih poverhnostej -K.: Tehnіka, 1982. 181s.
Podchernjaeva I. A., Jurechko D. V., Panasjuk A. D., Teplenko M. A. Zakonomernosti massoperenosa i adgezionnoe vzaimodejstvie pri jelektroiskrovom legirovanii (JeIL) splava AL9 keramicheskimi jelektrodami AlN-Ti(Zr)B2-Ti(Zr)Si2. Poroshkovaja metallurgija. 2004. N9/10. 43-50 s.
Konoval V.P., Umanskii O.P., Kostenko O.D., Martsenyuk I.S. Effect of the chemical composition of electrode materials and deposition parameters on the properties of electrospark-deposited coatings. II. Coating hardness and wear resistance. Powder Metallurgy and Metal Ceramics. 2014. Vol.53. No.3–4. P.210–218.
Storozhenko M. S., Umans'kij O. P. Znosostіjkіst' elektroіskrovih pokrittіv z kompozicіjnih materіalіv (TiB2-SiC)-(Ni-Cr). Problems of Friction and Wear. 2009. S.149-156.
Kandevaa M., Kostadinovb G., Penyashkib T. et al. Abrasive Wear Resistance of Electrospark Coatings on Titanium Alloys. Tribology in Industry. 2022. Vol. 44, No. 1. Р. 132-142.
Wu L., Guo X., Zhang J. Abrasive Resistant Coatings – A Review. Lubricants. 2014. Vol.2. Р.66–89.
Niu J., Zhang L.-W., Zhang Q.-Z. et al. Microstructure of TiC Coating Deposited by Electric-spark Process on BT20 Titanium Alloy. Heat Treatment of Metals. 2006. Vol. 31, no. 4. Р. 59-61.
Konoval V.P. Stіjkіst' do abrazivnogo znoshuvannja kompozicіjnih materіalіv ta pokrittіv na osnovі diboridu titanu-hromu. Problemi tribologії (Problems of Tribology). 2015. № 1. S.25-30.
Abrasive Wear Test ASTM G65. URL: https://extremecoatings.net/technical-resources/test-results/abrasive-wear-test-astm-g65/ (дата звернення: 14.09.2023).
Borak K. Impact of the form factor of the abrasive particles of the soil on the intensity of the tilling machines tools wear. Scientific Works of VNTU. 2020. № 1.