SIMULATION OF BOUNDARIES OF TRIBOSYSTEMS FUNCTIONING IN THE CONDITIONS OF BORDER OILING
DOI:
https://doi.org/10.18372/0370-2197.4(93).16262Keywords:
tribosystem; stability of tribosystems; seizure of friction surfaces; accelerated wear; tease border; accelerated wear border; robustness of the tribosystem; the robustness range of the tribosystem; tribosystem robustness criterionAbstract
The methodical approach in definition of limits of steady functioning of various designs of tribosystems in the conditions of maximum greasing, modeling of a range of steady work of tribosystems at a stage of constructive developments is developed. According to the results of theoretical research, the definition of robustness of the tribosystem is formulated. Robust range is a dimensionless quantity that characterizes the range of loads and sliding speeds, taking into account the design and technological features, where the wear mode is performed without damaging the friction surfaces.
Criteria for the robustness of tribosystems have been developed, which, unlike previously known ones, are not empirical and do not correspond to a certain type of structures or gears. The criteria are obtained on the basis of the theory of stability of technical systems and can be applied to a large class of structures. The boundaries of the values of the developed criteria are theoretically substantiated when the tribosystem loses its stability. The criteria make it possible to determine the loss of stability not only by scuffing, but also by the beginning of accelerated wear, which will improve the prediction of the reliability of tribosystems during operation. Structural and technological options for increasing the robustness of tribosystems are shown.
It is shown that the criteria of tribosystem robustness in terms of wear rate and friction coefficient should be applied in the design of tribosystems. By changing the design and technological parameters of the structure, it is possible to ensure the operation of the designed tribosystem in a given load-speed range without damage and with a given stability margin.
References
Анферов В.Н., Коваленко Р.К. Выбор критерия для оценки противозадирной стойкости спироидного зацепления / Системы. Методы. Технологии, 2017, № 4, с. 45- 51. DOI: 10.18324/2077-5415-2017-4-45-51
Коваленко Р.К., Анферов В.Н. Исследование задиростойкости в спироидном зацеплении при сочетании материалов звеньев пары: сталь-сталь / Вестник Кузбасского государственного технического университета, 2016, №5, с. 53-59.
Анферов В.Н., Коваленко Р.К. Оценка нагрузочной способности спироидных передач в приводах горных машин при пиковых нагрузках / Физико-технические про-блемы разработки полезных ископаемых, 2017, №4, с. 80-88.
Коваленко Р.К., Анферов В.Н. Результаты исследования заедания в спироидной передаче / Вестник Ижевского государственного технического университета им. М.Т. Калашникова, 2017, Том 20, №1, с. 17-20 DOI: 10.22213/2413-1172-2017-1-17-20
Tikhomirov P.V. Estimation of jamming gears / Aktual'nye problemy lesnogo kom-pleksa: sb. nauch. tr. po itogam mezhdunar. nauch.-tekhnicheskoi konf, BGITA. Bryansk, 2005. Vyp. 11. P. 61-65.
Chuanwei Zhang, BoPeng, LeGu, TingjianWang, LiqinWang. A scuffing criterion of steels based on the friction-induced adiabatic shear instability / Tribology International, 2020, vol. 148, p. 120-134. https://doi.org/10.1016/j.triboint.2020.106340
Wojciechowski L, Mathia T.G. Focus on the concept of pressure-velocity-time (pVt) limits for boundary lubricated scuffing / Wear, 2018, vol. 402-403, p. 179-186. https://doi.org/10.1016/j.wear.2018.02.019
J. Castro and J. Seabra, “Influence of Lubricant Properties and Temperature on the Scuffing Failure of FZG Geras”, Proceedings. of 25 th “Leeds-Lyon Symposium” on Tribolo-gy, Lyon, France, 8 – 11, September, 1998.
Castro J, Sottomayor A, Seabra J. Experimental and analystical scuffing criteria for FZG gears / Tribology Series, 2003, vol. 43, p. 651-661. https://doi.org/10.1016/S0167-8922(03)80093-7
Jian-hua Xue, Wei Li, Caiyan Qin. The scuffing load capacity of involute spur gear systems based on dynamic loads and transient thermal elastohydrodynamic lubrication / Tri-bology International, 2014, vol. 79, p. 74-83. https://doi.org/10.1016/j.triboint.2014.05.024
Voitov A. Structural identification of the mathematical model of the functioning of tribosystems under conditions of boundary lubrication / Problems of Tribology, 2021, V. 26 (2/100), p. 26-33. https://doi.org/10.31891/2079-1372-2021-100-2-26-33
Voitov A. Parametric identification of the mathematical model of the functioning of tribosystems in the conditions of boundary lubrication / Problems of Tribology, 2021, V. 26 (3/101), p. 6-14. https://doi.org/10.31891/2079-1372-2021-101-3-6-14
Войтов В.А., Захарченко М.Б. Моделирование процессов трения и изнашива-ния в трибосистемах в условиях граничной смазки. Часть 1. Расчет скорости работы диссипации в трибосистеме. // Проблеми трибології. – 2015. - № 1. – С. 49-57.
Vojtov V.A., Voitov A.V. Assessment of the quality factor of tribosystems and it’s relationship with tribological characteristics // Problems of Tribology, V. 25, No 4/98 – 2020, 20-26. https://doi.org/10.31891/2079-1372-2020-98-4-20-26
Войтов В.А. Принципы конструктивной износостойкости узлов трения гид-ромашин / В.А. Войтов, О.М. Яхно, Ф.Х. Аби Сааб – К.: Нац. техн. ун-т «Киев. поли-техн. ин-т», 1999. – 190 с.
Войтов А. В. Залежності зміни реологічних властивостей структури сполучених матеріалів у трибосистемі під час припрацювання // Проблеми тертя та зношування. 2020. – №. 3 (88). – С. 71-78. http://dx.doi.org/10.18372/0370-2197.3(88).14921
Поляк Б.Т., Цыпкин Я.З. Робастная устойчивость линейных дискретных систем / Доклады АН СССР, 1991, Т. 316, №4, с. 842–846.
Джури Э.И. Робатность дискретних систем. Обзор / Автоматика и телемеханика, 1990, №5, с. 3-28.
Ишматов З.Ш. Коэффициентные методы оценки робастности линейных непрерывных систем управления / Вестник МГТУ им. Г.И.Носова, 2006, №2, с. 40-50.