WEAR RESISTANCE OF ELECTRIC-SPARK COATINGS, OBTAINED FROM POWDER WIRE, IN CONTACT WITH WOOD
DOI:
https://doi.org/10.18372/0370-2197.2(95).16548Keywords:
coefficient of friction, wear, electrode, powder wire, electric-spark coating, wood, grain direction, closed cuttingAbstract
The paper investigates the main tribological characteristics (wear values and friction coefficients) of electric-spark coating (ESC), which was applied to the working surface of the 9XC tool steel using powder wire electrodes, in contact with wood depending on the species of the wood. its moisture content and the wood grain. The ESC was applied to the tool steel after hardening and low tempering. Determined was the influence of the chemical composition of powder wires of various systems on the frictional behavior of the materials under study in the conditions of contact interaction during reciprocating motion. It was found that ESC wear in contact with wet wood is greater than in contact with dry wood. The influence of moisture on the tribological characteristics of the selected ESC system is characterized. A higher value of the coefficient of friction in contact with wet wood was recorded. Under the selected testing conditions for the friction pair «9XC steel-wood», normal mechanochemical wear was determined with the formation of secondary structures that are subject to periodic destruction and restoration.
The average values of wear of friction pairs «wood- 9XC steel with ESC» obtained in the process of tribological studies indicate that the most effective for use in the technology of electrospark alloying in terms of wear resistance is the PWG electrode made from powder wire of the Fe-Cr-B-C system with graphite addition. The choice of this electrode is due to its widespread use for the restoration of worn surfaces by applying coating, low cost, a 2.5 ... 4 times better wear resistance of the welded material compared to the 9XC tool steel after hardening and low tempering, which significantly changes the engineering of the surface layer. The indexes of micro- and submicro-volumes of the surface layer of this ESC indicate high hardness, an increase in creep up to 0.97 %, relaxation ability up to 0.51 %, Young's modulus up to 207.86 GPa, which leads to an increase in strength. The structure of ESC from PWG is an austenitic matrix with boride inclusions (Fe, Cr)B, iron boride Fe2B, and chromium iron borides Cr1.65Fe0.35B0.96.
References
Kharlamov Yu. A., Polonsky L. G. Gazotermicheskoe napyilenie. Sovremennoe sostoyanie i perspektivy razvitiya. Vestnik Vostochnoukrainskogo natsionalnogo universiteta imeni Vladimira Dalya. 2016. № 226(2). S. 5–19.
Moreau C., Bisson J.-F., Lima R. S., Marple B. R. Diagnostics for advanced materials processing by plasma spraying. Pure and applied chemistry. 2005. №77(2). Р. 443–462.
Borisov Yu. S., Astakhov E. A., Murashov A. P., Grishchenko A. P., Vigilyanskaya N. V., Kolomytsev M. V. Issledovanie struktury i svoystv gazotermicheskih pokryitiy sistemy WC-Co-Cr, poluchennyh vysokoskorostnymi metodami napyleniya. Avtomaticheskaya svarka. 2015. № 10. S. 26–29.
Chivavibul P., Watanabe M., Kuroda S. Development of WC–Co coatings deposited by warm spray process. Journal of Thermal Spray Technology. 2008. Vol. 17. Iss. 5-6. P. 750–756.
Knapp J. K., Nitta H. Fine-particle slurry wear resistance of selected tungsten carbide thermal spray coatings. Tribology International. 1997. Vol. 30. Iss. 3. P. 225–234.
Du L., Xub B., Dong S. Sliding wear behaviour of the supersonic plasma sprayed WC–Co coating in oil containing sand. Surface and Coatings Technology. 2008. Vol. 202. Iss. 15. P. 3709–3714.
Murthy J. K. N., Venkataraman B. Abrasive wear behaviour of WC–Co–Cr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surface and Coatings Technology. 2006. Vol. 200. Iss. 8. P. 2642–2652.
Borisova A. L., Kleyman A. Sh. Vliyanie alyuminiya na strukturu i fiziko-mehanicheskie svoystva elektrometallizatsionnyh pokryitiy iz poroshkovyh provolok s napolnitelem iz ferrohroma. Prochnost detaley selskohozyaystvennoy tehniki. Kishinev: Kishinevskiy s.-h. Institut. 1990. S. 27–33.
Borisova A. L., Mits I. V., Kaida T. V. Struktura i svoystva elektrodugovyih pokryitiy na osnove ferrobora, poluchennyih iz poroshkovyih provolok. Avtomaticheskaya svarka. 1991. № 9. S. 66–68.
Borisov Yu. S., Koziakov I. A., Korzhyk V. N. Struktura i svoystva gazotermicheskih pokrytiy, poluchennyh s ispolzovaniem poroshkovyh provolok sistemy Fe–Cr–B, Fe–Cr–B–C. Avtomaticheskaya svarka. 1996. № 5 (518). S. 21–24.
Koziakov I. A., Korzhyk V. N., Borisov Yu. S. Tribologicheskie harakteristiki amorfizirovannyh gazoplamennyh pokrytiy, napylyaemyh poroshkovymi provolokami sistemy Fe–B. Avtomaticheskaya svarka. 1996. № 10. S. 24–28.
Borisova M. Z., Struchkov N. F., Vinokurov G. G. Analiz struktury iznosostoykogo pokrytiya, poluchennogo elektrodugovoy metallizatsiey poroshkovoy provoloki s tugoplavkimi dobavkami. Nauka i obrazovanie. 2016. № 2. S. 76–80.
Pokhmurskii V. V., Student M. M., Hvozdetskii V. M., Pokhmurska A. V. Poroshkovye provoloki serii FMI dlya elektrodugovogo napyleniya pokrytiy (Obzor). Avtomaticheskaya svarka. 2011. № 9. S. 52–57.
Pokhmurska A., Student M., Bielanska E. et al. Tribologycal properties of arc sprayed coatings obtained from FeCrB and FeCr based powder wires. Surface & Coating Technology. 2002. № 151–152. Р. 490–494.
Pokhmurskii V., Dovhunyk V., Student M. et al. Triboelektrochemiczne wlasciwosci powlok natryskiwanych lukowo na stopy aluminium. Inzynieria Powierzchni. 2008. № 1. Р. 9–13.
Borisov Yu. S., Borisova A. L., Burlachenko A. N., Tsymbalistaya T. V., Senderowski C. Struktura i svoystva legirovannyh poroshkov na osnove intermetallida Fe3Al dlya gazotermicheskogo napyleniya, poluchennyh metodom mehanohimicheskogo sinteza. Avtomaticheskaya svarka. 2017. № 9. S. 40–47.
Rafiei M., Enayati M.N., Karimzadeh F. Caracterization and formation mechanism of nanocrystalline (Fe,Ti)3Al intermetallic compound prepared by mechanical alloying. Journal of Alloys and Compounds. 2009. № 480. P. 392–396.
Grigorenko G.M., Korzhik V.N., Adeeva L.І., Tunіk A.Yu., Stepanyuk S.M., Karpets М.V., Doroshenko L.K., Lyutik M.P., Chayka A.A. Osobennosti metallurgicheskih protsessov pri plazmenno-dugovom napylenii pokrytiy, poluchennyh iz poroshkovoy provoloki so stalnoy obolochkoy i napolnitelyami B4C i B4C+ZrO2. Visnyk Pryazovskogo derzhavnogo tehnichnogo universytetu. Rozdil: Tehnichni nauki. 2016. № 32. S. 125–137.
Petrov S. V. Carp I. N. Plazmennoe gazovozdushnoe napylenie. Kiev: Naukova dumka, 1993. 495 s.
Holubets V. M., Pashechko M. I., Barszcz M., Borc J. Micromechanical characteristics of the Surface Layer of 45 steel after electric-spark treatment. Materials Science. 2019. Vol. 55. №3. Р. 409–416.
Holubets V. M., Pashechko M. I., Borc J., Tisov O. V., Shpuliar Yu. S. Wear Resistance of Electrospark-Deposited Coatings in Dry Sliding Friction Conditions. Powder Metallurgy and Metal Ceramics. 2021. №60. Р. 90–96.
Holubets V. M., Dovhunyk V. M., Pashechko M. I., Korniy S. A, Shpuliar Yu. S. Friction Behavior of Electric-Spark Coatings Under the Conditions of Boundary Lubrication. Materials Science. 2020. №56. Р. 43–49.
Holubets V. M., Honchar І. М., Shpuliar Yu. S. Pidvyshchennia stiikosti metalo- i derevorizalnoho instrumentu nanesenniam elektroiskrovykh pokryttiv. Naukovyi visnyk NLTU Ukrainy. 2018. Т.28, № 2. S. 111-114.
Pashechko M. I., Holubets V. M., Chernets M. V. Formirovanie i friktsionnaya stoykost evtekticheskih pokrytiy. Kiev: Naukova dumka, 1993. 344 s.
Ugolev B. N. Drevesinovedenie i lesnoe tovarovedenie: uchebnik. Moskva: MGUL, 2007. 351 s.
Lyubchenko V. I. Rezanie drevesiny i drevesnyh materialov: uchebnik. Moskva: MGUL, 2004. 306 s.
Beynart I. I., Vedernikov N. A., Gromov V. S. Kletochnaya stenka drevesiny i ee izmenenie pri himicheskom vozdeystvii. Riga: Zinatne, 1972. 510 s.
Moiseev A. V. Iznosostoykost derevorezhushchego instrumenta. Moskva: Lesnaya promyshlennost, 1981. 112 s.