Методи параметризації і апроксимації дійсних поверхонь

Автор(и)

  • Н. В. Глазунов Национальный авиационный университет
  • С. П. Соловей Национальный авиационный университет

DOI:

https://doi.org/10.18372/2073-4751.1.6927

Анотація

Представлені  вибрані методи  параметризації та  апроксимації дійсних  поверхонь, а також опуклих оболонок точкових множин

Біографія автора

Н. В. Глазунов, Национальный авиационный университет

д-р физ.-мат. наук

Посилання

Farin, G. Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego. – 1988. – 682 p.

Препарата Ф., Шеймос М. Вычислительная геометрия: Введение. – М.: Мир, 1989. – 478 с.

Шафаревич И.Р. Основы алгебраической геометрии. – Т.1. – Т2. – М.: Наука, 1988. – С. 304–351.

Schicho, J. Rational Parametrization of Surfaces // J. Symbolic Computation. 1998. – 26. – P. 1–29.

Floater M.S. Parameterization and smooth approximation of surface triangulation // Computer Aided Geometric Design. – 1997. – 14. – P. 231–250.

Minkowski H. Diophantische Approximationen. – Leipzig: Teubner, 1907, Vol. 8. – 235 p.

Cohn H. Minkowski’s conjectures on critical lattices in the metric (|ξ|p+|η|p )(1/p)// Annals of Math. – 1950. – 51. – N 3. – P.738–734.

Glazunov N.M. Minkowski's Conjecture on Critical Lattices and the Quantifier Elimination // Algoritmic algebra and logic. Proc. of the A3L 2005, Passau, Germany. – P. 111–114.

Glazunov N.M. Interval computations and their Categorification. Numerical Algorithms. – 2004. – 37. – P. 159–164. 10. Stoer J., Witzgall C. Complexity and optimization in finite dimensions I. New-York:Springer-Verlag, 1970. –324 p.

##submission.downloads##

Опубліковано

2009-03-10

Номер

Розділ

Статті