Вплив компонування аеродинамічних профілів на аеродинамічні коефіцієнти БПЛА для великих кутів атаки

Автор(и)

DOI:

https://doi.org/10.18372/1990-5548.86.20565

Ключові слова:

cистема керування рухом, аеродинамічні коефіцієнти, експериментальне випробування, аеродинамічна труба, компонування аеродинамічного профілю, кут атаки

Анотація

У статті досліджується вплив компонування аеродинамічних профілів на аеродинамічні коефіцієнти при великих кутах атаки. Наведено огляд попередніх досліджень з досліджуваної теми. Описано характеристики експериментального обладнання, включаючи набір датчиків аеродинамічного балансу та інформаційно-вимірювальну систему. Характеристики описаного експериментального обладнання дозволяють реалізувати автоматизацію експериментального випробування. Наведено основні особливості методики експерименту. Перелічено основні функції інформаційно-вимірювальної системи. Результати експериментального випробування представлені у вигляді графічних залежностей аеродинамічних коефіцієнтів від кутів атаки. Проведено детальний аналіз отриманих результатів. Результати дослідження можуть бути корисними для проектування систем керування рухом БПЛА та моделювання руху БПЛА з урахуванням аеродинамічних збурень.

Біографії авторів

Олександр Іванович Жданов , Державний університет «Київський авіаційний інститут»

Кандидат технічних наук

Cтарший науковий співробітник

Аерокосмічний факультет

Ольга Андріївна Сущенко , Державний університет «Київський авіаційний інститут»

Доктор технічних наук

Професор

Факультет аеронавігації, електроніки та телекомунікацій

Назар Віталійович Якубовський , Державний університет «Київський авіаційний інститут»

Аспірант

Факультет аеронавігації, електроніки та телекомунікацій

Посилання

O. Zhdanov, O. Sushchenko, and V. Orlianskyi, “Analysis of measuring errors during aerodynamic research in wind tunnel,” In: Ostroumov, I., Marais, K., Zaliskyi, M. (eds) Advances in Civil Aviation Systems Development. ACASD 2025. Lecture Notes in Networks and Systems, vol. 1418. Springer, Cham. (2025) https://doi.org/10.1007/978-3-031-91992-3_1

O. Zhdanov, V. Orlianskyi, O. Sushchenko, “Researching influence of vortex generators on aircraft aerodynamic characteristics,” In: Ostroumov, I., Zaliskyi, M. (eds.) Proceedings of the 2nd International Workshop on Advances in Civil Aviation Systems Development. ACASD 2024, Lecture Notes in Networks and Systems, vol. 992, pp. 410–422. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-60196-5_30

J. S. Delinero, J. M. Di Leo, and M. E. Camocardi, “Vortex generators effect on low Reynolds number airfoils in turbulent flow,” International Journal of Aerodynamics, 2(1), 1–14, 2020. https://doi.org/10.1504/IJAD.2012.046539

Y. Jia, J. Huang, Q. Liu, et al., “The wind tunnel test research on the aerodynamic stability of wind turbine airfoils,” Energy, vol. 294, 130889, 2024. https://doi.org/10.1016/j.energy.2024.130889

R. Li, J. Niu, Y. Zhao, et al., “Wind tunnel experiments on the aerodynamic effects of a single potted tree: Hot-wire anemometry and PIV measurements,” Urban Climate, vol. 62, 102520, 2025. https://doi.org/10.1016/j.uclim.2025.102520

T. Adeyi, O. O. Alabi, and O. A. Towoju, “Influence of airfoil geometry on VTOL UAV aerodynamics at low Reynolds numbers,” Archives of Advanced Engineering Science, 2024. https://doi.org/10.47852/bonviewAAES42023485

L. Habib, M. Joon, L. Ben-Tzur, et al., “Wind tunnel testing of a wing section for a small UAV,” In: Conference AIAA Aviation, 2024. https://doi.org/10.2514/6.2024-3764

A. Dreus and O. Kravets, “Rationale for choosing the airfoil of a UAV wing using a dynamic ground effect principle,” Eastern-European Journal of Enterprise Technologies, 6(1), 6–13, 2024. https://doi.org/10.15587/1729-4061.2024.314844

C. J. Reddy and A. Sathyabhama, “Comparative study on the effect of leading edge protuberance of different shapes on the aerodynamic performance of two distinct airfoils,” Journal of Applied Fluid Mechanics, 16(1), 157–177, 2023. https://doi.org/10.47176/jafm.16.01.1334

P. Rouco, P. Orgeira-Crespo, and G. D. R. Gonzalez, “Airfoil optimization and analysis using global sensitivity analysis and generative design,” Aerospace, 12(3), 180, 2025. https://doi.org/10.3390/aerospace12030180

S. Penchev and H. Panayotov, “A wind tunnel study of aerodynamic characteristics of wings with arc-shaped wingtips,” The 14th International Scientific Conference TechSys 2025—Engineering, Technologies and Systems, 100(1), 2025, 28. https://doi.org/10.3390/engproc2025100028

Y. Zhang, J. Luo, Y. Zheng, and Y. Liu, “Aerodynamic optimization in wide range of operating conditions based on reinforcement learning,” Aerospace, 12(5), 44, 2025. https://doi.org/10.3390/aerospace12050443

O. Biblarz, “Elements of aerodynamics: A concise introduction to physical concepts,” London, Wiley, 2022.

C. Britcher and D. Lanman, “Wind tunnel test techniques: Design and use at low and high speeds with statistical engineering applications,” Cambridge, Academic Press, 2023.

J. D. Anderson and J. C. Cadou, “Fundamentals of Aerodynamics,” Columbus, Mcgraw-Hill, 2023.

S. Discetti and A. Ianiro, “Experimental Aerodynamics,” London, Taylor & Francis, 2017.

K. Hufnagel, “Wind Tunnel Balances,” Berlin, Springer, 2022.

L. S. Zhiteckii, V.N. Azarskov, K.Y. Solovchuk, and O.A. Sushchenko, “Discrete-time robust steady-state control of nonlinear multivariable systems: A unified approach,” IFAC Proceedings, vol. 47(3), 2014, 8140–8145. https://doi.org/10.3182/20140824-6-ZA-1003.01985

Y. Hryshchenko, V. Romanenko, O. Chuzha, and V. Hryshchenko, “Telecommunication warning of the crew about the failure of on-board radio altimeters,” In: CEUR Workshop Proceedings on Cybersecurity Providing in Information and Telecommunication Systems, CPITS 3654, 2024, 485–490. https://ceur-ws.org/Vol-3654/short18.pdf

O. A. Sushchenko, “Robust control of angular motion of platform with payload based on H-synthesis,” Journal of Automation and Information Sciences, 48(12), 13–26, 2016. https://doi.org/10.1615/JAutomatInfScien.v48.i12.20

R. Voliansky, A. Sadovoi, and N. Volianska, “Interval model of the piezoelectric drive,” in Proc. 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2018, pp. 1–6, https://doi.org/10.1109/TCSET.2018.8336211.

B. I. Kuznetsov, T. B., Nikitina, and I. V. Bovdui, “Multiobjective synthesis of two degrees of freedom nonlinear robust control by discrete continuous plant,” Technical Electrodynamics, vol. 5, pp. 10–14, 2020. https://doi.org/10.15407/techned2020.05.010

##submission.downloads##

Опубліковано

2025-12-19

Номер

Розділ

АВІАЦІЙНИЙ ТРАНСПОРТ