Criptografy applications of primitive matrices Galois and Fibonacci

Authors

  • Олександр Анатолійович Білецький Національний авіаційний університет.

DOI:

https://doi.org/10.18372/2410-7840.15.4777

Keywords:

irreducible polynomials, primitive ma-trices, primitive elements of the field Galois

Abstract

Formation of pseudo-random sequences of binary numbers is the actual problem being solved in cryptography. The most common method of generating pseudo-random sequences is based on linear shift registers of maximal order linear feedback is uniquely described by the classical Galois and Fibonacci matrices. The paper deals with the synthesis of generalized primitive matrices Galois and Fibonacci (and their dual versions) of any order n over Galois prime field of characteristic p. Synthesis of matrices based on the use of irreducible polynomials of degree n fn characteristic p and primitive elements of the extended Galois field generated by the polynomial fn. We discuss the prospects of using such matrices in the construction of pseudorandom sequence of generalized p-ary numbers. Developed conversion operators of any generalized matrix of all the others. Proposed stylized representation of feedbacks in the LSR-generators of pseudo-random sequences.

Author Biography

Олександр Анатолійович Білецький, Національний авіаційний університет.

Junior Research Fellow Department of Electronics, National Aviation University

References

Поточные шифры. Результаты зарубежной открытой криптологии / [Электронный ресурс]. – Режим доступа: http//www.ssl.stu.neva.ru /psw/ crypto.html

Лидл Р. Конечные поля /Р. Лидл, Г. Нидер-Райтер. Т. 1. – М.: Мир, 1988. – 432 с.

Иванов М.А. Теория, применение и оценка качества генераторов псевдослучайных последовательностей. / М.А. Иванов, И.В. Чугунков – М.: КУДИЦ-ОБРАЗ, 2003. – 240 с.

Гантмахер Ф. Р. Теория матриц. / Ф.Р. Гантмахер — М.: Физматлит, 2004. — 560 с.

Белецкий А.Я. Преобразования Грея. Монография в 2-х томах. / А.Я. Белецкий, А.А. Белецкий, Е.А. Белецкий. Т. 1. Основы теории – К.: Кн. Изд-во НАУ, 2007. – 412 с.

Белецкий А.Я. Синтез примитивных матриц в конечных полях Галуа и их применение. / А.Я. Белецкий, А.А. Белецкий // Информационные технологии в образовании. – Херсон: ХГУ, 2012. – С. 23–43.

Белецкий А.Я. Примитивные матрицы над простыми полями Галуа. /А.Я. Белецкий // Системи обробки інформації. – Х. ХУПС. – 2012, № 3. – С. 218-219.

Stream ciphers. The results of the open foreign cryptology / [electronic resource]. - Mode of access: http//www.ssl.stu.neva.ru /psw/ crypto.html.

R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge university press, 1994, 416 p.

M.A. Ivanov, I.V. Chugunkov The the theory application and evaluation a generator for pseudo sequences. M.: Cudits-Obraz, 2003, 240 p.

F.R. Gantmaher Matrix Theory., М.: Fizmathlit, 2004, 560 p.

A.Ja. Beletsky, A.A. Beletsky, E.A. Beletsky. Transformations Gray. Monography in 2 vols. V. Fundamentals of the theory - Kiev: Book publisher NAU, 2007, 412 p.

A.Ja. Beletsky, A.A. Beletsky. Synthesis of primitive matrices of finite Galois fields and their application. Information technology in education, Kherson: KSU, 2012, pp. 23-43.

A.Ja. Beletsky. Primitive matrices over prime Galois fields. // The information processing system. – Khar-kov. HUVS, 2012, № 3, pp. 218-219.

Published

2013-06-13

Issue

Section

Articles