Inequality of computational effort of Pollard p-method according to dispaly selection and initial estimate for small-scale factorizable amounts

Authors

  • Степан Дмитриевич Винничук Pukhov Institute for Modelling in Energy Engineering, National Academy of Sciences of Ukraine.
  • Евгений Васильевич Максименко postgraduate student Pukhov Institute for Modelling in Energy Engineering, National Academy of Sciences of Ukraine.
  • Виталий Николаевич Мисько postgraduate student Pukhov Institute for Modelling in Energy Engineering, National Academy of Sciences of Ukraine.

DOI:

https://doi.org/10.18372/2410-7840.16.7609

Keywords:

factorizatio, Pollard p factorization method, initial estimate, presentation in the residue ring, computational complexity

Abstract

For a range of information security tasks the cryptostrengthof algorithms applied is linked to solving acomputational problem of multi-digit numbers factorization.Algorithms of modern factorization methods canuse existing algorithms as integral part. That is why aresearch of existing methods and development of the wayto accelerate their work is considered to be a highly topicalproblem. For Pollard p factorization method generalevaluation of iterations number is known, but the resultsof initial approximation influence study have not beenpresented. To evaluate such influence it is suggested todefine the average number of iterations for Pollard factorization method in the context of numbersoptions of 2*107 not exceeding 231, of the N=p*q type,where p and q are prime factors. While defining the averageiterations number the total iterations count for alloptions of N under study was calculated and divided bythe number of these options. To provide factoring constantc in the polynomial was increased by one wheneveriteration process ran into a cyclic path. Studies are conductedto evaluate the average iterations number dependingon the choice of constant c in the polynomial, representingiteration process 21 ( )mod    k k x x c N , as well ason initial estimate. It has been defined that for the numberoptions under study the average iterations number islower than existing evaluations, and it can be decreased byone third, due to the initial estimate.

Author Biographies

Степан Дмитриевич Винничук, Pukhov Institute for Modelling in Energy Engineering, National Academy of Sciences of Ukraine.

doctor of technical sciences, acting head of department

Евгений Васильевич Максименко, postgraduate student Pukhov Institute for Modelling in Energy Engineering, National Academy of Sciences of Ukraine.

postgraduate student

Виталий Николаевич Мисько, postgraduate student Pukhov Institute for Modelling in Energy Engineering, National Academy of Sciences of Ukraine.

postgraduate student

References

. Саломаа А. Криптография с открытым ключом: пер. с англ. / А. Саломаа. – М.: Мир, 1996. – 318 с.

. Song Y. Yan. Cryptanalytic attacks on RSA / Song Y. Yan. – Springer Science and Business Media, Inc. 2008. – Р. 255.

. Ростовцев А.Г. Теоретическая криптографія / А.Г. Ростовцев, Е.Б. Маховенко. – СПб: АНО НПО «Профессионал», 2004. – 480 с.

. Горбенко И.Д. Анализ каналов уязвимости системы RSA / И.Д. Горбенко, В.И. Долгов, А.В. Потий, В.Н. Федорченко // Безопасность информации. – 1995. – № 2. – С.22 – 26.

. Daniel R.L. Brown. Breaking RSA May Be As Difficult As Factoring [Электронный ресурс]. – Режим доступа: http://www.pgpru.com/novosti/2005/1026vzlomrsabezfaktorizaciirealenoneeffektiven. – Название с экрана.

. Василенко О.Н. Теоретико–числовые алгоритмы в криптографии / О.Н. Василенко. – М.:МЦНМО, 2003. – 328 с.

. Кормен Т. Алгоритмы: построение и анализ / [Кормен Т., Лейзерсон Ч., Риверст Р., Штайн К.]. – [2-е изд.]. – М.: Вильямс, 2011. – 1296 с.

. Brent R.P. An improved Monte Carlo factorization algorithm / R.P.Brent // BIT. – 1980. – V. 20. – Pp. 176-184.

. Pollard J.M. A Monte Carlo method for factorization / J.M. Pollard // BIT. – 1975. – V. 15. – Pp. 331 – 334.

. Кнут Д. Искусство программирования. Т. 2. Получисленные алгоритмы / Д. Кнут. – М.: Вильямс, 2000. – 788 с.

. Винничук С.Д. Алгоритм Ферма факторизации чисел вида N=pq методом прореживания / С.Д. Винничук, А.В. Жилин, В.Н. Мисько

// Электронное моделирование, 2014. – Т. 36, № 2. – С. 3-14.

Published

2015-03-03

Issue

Section

Articles