Constructing eliptic curves with zero trace of Frobenius endomorphism
DOI:
https://doi.org/10.18372/2410-7840.20.12208Keywords:
finite field, elliptic curve, Edwards curve, order of a curve, Legendre symbol, square, algebraic curve, group of points of an elliptic curve, order of a point, torsion curvesAbstract
Most cryptosystems of the modern cryptography can benaturally transform into elliptic curves. We consider Edwardsalgebraic curves over a finite field, which at the presenttime is one of the most promising supports of sets ofpoints that are used for fast group operations[1,2,14].These are found in asymmetric cryptosystems. In particular,for constructing random crypto-stable sequences. It isshown that the projective curve is not elliptic. This paperaims to find the criterion and sufficient conditions for thesupersingularity of the Edwards curve and the elliptic curvein the Montgomery form over the finite field p also a generalizationof this criterion for a finite algebraic extentionof n pF . The result obtained allows us to construct an arbitrarysupersingle curve of Edwards and Montgomery withoutdecomposing on the factors the polynomial from,which is distinguished in the formula by the defining curve.Till now it was proved that only for coefficients1 d 2, d 2 over p [10]. The set of all coefficients ofd Ewhich contribute supersingularity of d E over p isresearched in this paper. Also in purpouse of our paper iscriterion and sufficient conditions of Edwards and ellipticcurves supersingularity over n pF , viz our purpouse is researchingof the parametrs set such that whereby we get apair of cirves with Frobenius trace which is equal to zero.It was found not only the set of such coefficients and characteristicsof fields where these curves are supersingularand general formula which provids a way to check for supersingularcurve over a field n p . In this paper the resultabout supersingular curves with coefficients 1 d 2, d 2 over p obtained in [10] was generalized also formulationof Theorem 3 was refined. The same research was providedfor elliptic curve in the Montgomery form over fieldsp and n p .References
H. Edwards, "A normal form for elliptic curves",
American Mathematical Society, vol. 44, no. 3, pp. 393-
, 2007.
D. J. Bernstein, P. Birkner, M. Joye, T. Lange, C. Peters,
"Twisted Edwards Curves", IST Programme
ECRYPT, and in part by grant ITR-0716498, pp. 1-17,
A. Menezes, T. Okamoto, S. Vanstone, "Reducing Elliptic
Curve Logarithms to Logarithms in a Finite
Field", IEEE Transactions On Information Theory, vol. 39,
no. 5, pp. 1603-1646, 1993.
Е. Алексеев, И. Ошкин, В. Попов, С. Смышляев,
Л. Сонина, "О перспективах использования скру-
ченных эллиптических кривых Эдвардса со станда-
ртом ГОСТ Р 34.10-2012 и алгоритмом ключевого
обмена на его основе", Материалы XVI международ-
ной конференции "РусКрипто 2014", C. 24-26, 2014.
S. Hallgren, "Linear congruential generators over
elliptic curves", Preprint CS-94-143, Dept. Of Comp. Sci.,
CornegieMellon Univ., pp. 1-10, 1994.
И. Виноградов, Основы теории чисел: Учебное пособие.
-е изд., СПб.: Издательство «Лань», 2009, 271 с.
А. Белецкий, А. Белецкий, "Симметричный блоч-
ный криптоалгоритм", Захист інформації, № 2 (29),
С. 42-51, 2006.
Р. Скуратовський, П. Мовчан, "Нормалiзацiя скру-
ченої кривої Едвардса та дослiдження її властиво-
стей над Fp", Збiрник праць 14 Всеукраїнської науково-
практичної конференцiї. ФТI НТУУ "КПI", Том 2,
С. 102-104, 2016.
Р. Скуратовський, "Дослiдження властивостей
скрученої кривої Едвардса. Конференцiя держав-
ної служби спецiального зв’язку та захисту iнфор-
мацiї". [Електронний ресурс]. Режим доступу:
http://www.dstszi.gov.ua/dstszi/control/uk/publis
h/article?showHidden=1artid=252312cat id=240232
ctime=1464080781894
А. Бессалов, О. Цыганкова, "Взаимосвязь семейс-
тва точек больших порядков кривой Эдвардса над
простым полем", Захист інформації, Т. 17, № 1,
С. 73-80, 2015.
R. Skuratovskii, "Twisted Edwards curve and its group
of points over finite field Fp", Лiтня школа "Алгебра,
Топологiя, Аналiз", Одеса, pp. 122-124, 2016.
R. Skuratovskii, U. Skruncovich, "Twisted Edwards
curve and its group of points over finite field Fp",
Conference. Graphs and Groups, Spectra and Symmetries.
Akademgorodok, Novosibirsk, Russia. http://math.
nsc.ru/conference/g2/g2s2/exptext/SkruncovichSk
uratovskii-abstract-G2S2.pdf
M. Рид, Алгебраическая геометрия для всех, Москва:
Мир, 1991, 143 с.
H. Huseyin, K. W. Kenneth, C. Gary. "Twisted Edwards
Curves Revisited", ASIACRYPT LNCS 5350,
pp. 326-343, 2008.
С. Степанов, Арифметика алгебраических кривых. М.:
Наука, 1991, 368 с.
N. Koblitz, "Eliptic Curve Cryptosystems",
Mathematics of Computation, vol. 48, no. 177, pp. 203-
, 1987.
І. Сергієнко, В. Задірака, О. Литвин, Елементи за-
гальної теорії оптимальних алгоритмів та суміжні пи-
тання, К.: Наук. думка, 2012, 400 с.
О. Рибак, "Розкладність рядків та звідність много-
членів", У світі математики, № 4, C. 18-29, 2006.
Р. Скуратовский, "Метод быстрого таймерного ко-
дирования текстов”, Кибернетика и системный ана-
лиз, Т. 49, № 1, С. 154-160, 2013.
В. Долгов, "Эллиптические кривые в криптогра-
фии", Системи обробки інформації, № 6 (73). С. 3-10,
А. Болотов, С. Гашков, А. Фролов, А. Часовских,
Элементарное введение в эллиптическую криптографию,
М.: КомКника, Т. 2., 2006, 328 с.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).