Comparative analysis of the efficiency of algorithms fast Fourier transform in the basis systems
DOI:
https://doi.org/10.18372/2410-7840.19.11441Keywords:
the system of Walsh functions, the golden proportion, Walsh-like system of the golden ratio functionsAbstract
The article deals with the comparative analysis of the effectiveness of two classes of fast Fourier transform algorithm (FFT) in the bases of classical systems of Walsh functions and bases Walsh-like systems of the golden section features binary-power order. As a criterion of the ef-fectiveness of the FFT algorithm selected the principle of linear frequency scales connectivity FFT processor. The set of numbers from 0 to processor input channels are equidistantly arranged on a frequency axis constitutes an input frequency scale, and the set of equidistantly spaced on the frequency axis output channel numbers of the output frequency scale FFT processor. The only basis, delivering linear scales connectivity to private FFT processor is the basis of classical Walsh functions Coulee, whose analogue does not exist in the set-bases Terminals. On this basis, formulate an opinion on inappropriate use of Walsh-like-bases Terminals to perform the tasks of the spectral analysis of discrete complex exponential signals.References
Белецкий А.Я. Синтез симметричных систем функций золотого сечения / А.Я. Белецкий, В.А. Лужецкий. // Захист інформації, Том 18, № 4 (2016). – С. 283–292.
Беллман Р. Введение в теорию матриц / Р. Беллман. – М.: Наука, 1989. – 368 с.
Васютинский Н.А. Золотая пропорция / Н.А. Васютинский. – М.: Молодая гвардия, 1990. − 238 c.
Трахтман А.М. Основы теории дискретных сигналов на конечных интервалах. / А.М. Трахтман, В.А. Трахтман. – М.: Сов. радио, 1975. − 208 с.
Белецкий А.Я. Комбинаторика кодов Грея. / А.Я. Белецкий. – К.: Изд-во КВІЦ, 1986. – 506 с.
Cooley J.W., Tukey J. An algorithm for the machine calculation of complex Fourier series // Math. Comput. 1965. Vol. 19, No. 90. P. 297–301.
Beletsky A. Ya. Syntesis and analysis of system of Walsh-Cooly basis functions. – XIII International Conference – NIKON-2000 – Wroclaw, 2000.
Белецкий, А.Я. Индикаторные матрицы систем функций Уолша. / А.Я. Белецкий. // Вісник СумДУ. Серія Технічни науки, № 4, 2009. – С. 85-93.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).