HOLOGRAPHIC TECHNOLOGIES OF EDUCATION AS A COMPONENT OF TRAINING OF FUTURE ENGINEERS IN THE CONDITIONS OF EDUCATIONAL AND INFORMATION ENVIRONMENT
DOI:
https://doi.org/10.18372/2411-264X.21.17091Keywords:
holographic learning technologies; information systems; learning process; educational and information environment; training of future engineersAbstract
The article presents the results of training future engineers with the help of holographic technologies for lectures, practical and laboratory classes. When there is a global change (pandemic, war), education faces the risk that it will not be able to continue its usual processes and will have to move to instant managerial change. The aim of the article is to identify and outline the positive elements of holographic technologies that will help increase interactivity in the teaching and learning process. The task of the study is to find an alternative solution to attract the latest learning technologies in the training of future engineers. Experience shows that in this case, the educational and information environment is the best solution for classes. But the problem of learning is the interactivity of the student to improve the motivation of future professionals with the help of new technologies. At the Technical University, we propose to introduce innovative teaching and learning methods, including games, simulations and holograms. Meanwhile, training is not only the transfer of knowledge, but also an active, constructive and cognitive process through which the future engineer manages internal resources for the formation of key professional competencies. Research methods are to study and generalize domestic and foreign experience to substantiate the conceptual provisions of holographic learning technologies, structural and scientific analysis, as well as monitoring the learning process. Results. To improve the training of future engineers in an educational information environment, holographic technologies can be useful and become another resource that can change the way you create and conduct classes. To obtain this result, it is necessary to study the feasibility of holographic technologies in accordance with the training in the educational and information environment. The article reveals the essence of the considered holographic technologies, describes the advantages and features of their implementation in the educational process of the Technical University. This helps students to intensify cognitive activities and stimulate them to self-education. In the course of elaboration of a number of research ideas, various scientific approaches to the interpretation of the term "holographic technologies" are proposed. Conclusion. According to existing concepts, holographic technologies can be considered as a result of the creative process and as a process of innovation. Peculiarities, prospects of introduction of holographic technologies into the educational process of the technical university are determined, which require further detailed analysis and study in complex interaction with information systems.
References
Биков, В. Ю. (2012). Інноваційний розвиток засобів і технологій систем відкритої освіти. Сучасні інформаційні технології та інноваційні методики у підготовці фахівців: методологія, теорія, досвід, проблеми. Зб. наук. праць, Випуск 29. Київ-Вінниця : ТОВ фірма «Планер», 32-40.
Василенко, Н. В. (2015). Хмарні технології в управлінні навчальним закладом / Н. В. Василенко. – Х. : Вид. група «Основа», 112 с.
Полянський, П.В., Фельде, Х.В., Богатирьова, Г.В. (2013). Голографія. – Чернівці : Чернівецький нац. ун-т, 208 с.
Рахманов, В. О. (2015). Методичні засади формування освітньо-інформаційного середовища у вищому технічному навчальному закладі. Вісник Національного авіаційного університету. Серія : Педагогіка. Психологія : зб. наук. праць. К : НАУ, вип. 2 (7), 98-103.
Спірін, О. М., Головня, О. С. (2018). Застосування технологій віртуалізації Unix-подібних операційних систем у підготовці бакалаврів інформатики. Інформаційні технології і засоби навчання, 3 (65), 201-222.
Спірін, О. М., Вакалюк, Т. А. (2018). Хмаро орієнтовані інтелектуальні карти як засіб інформаційно-аналітичної підтримки професійної діяльності викладача. Наукові записки Бердянського державного педагогічного університету. Серія : Педагогічні науки : зб. наук. пр., вип.1. Бердянськ : БДПУ, 227-234.
Abbasi, H., Zarei, T., Jalali Farahani, N., Granmayeh, Rad A. (2014). Studying the recent improvements in holograms for three-dimen- sional display. Int. J. Opt. 2014, 1–7.
Agocs, T., Balogh, T., Forgacs, T., Bettio, F., Gobbetti, E., Zanetti, G., Bouvier, E. (2006). ‘A large scale interactive holographic display’, in VR ‘06: Proceedings of the IEEE Virtual Reality Conference, IEEE Computer Society, Washington, DC, USA, 57.
Aina, O. (2010) Application of Holographic Technology in Education. Kemi-Tornio University of Applied Sciences, Tornio, 67.
Bailenson, J. N., Yee, N., Blascovich, J., Beall, A. C., Lundblad, N., Jin, M. (2008). The use of immersive virtual reality in the learning sciences: Digital transformations of teachers, students, and social context. The Journal of the Learning Sciences, 17(1), 102-141.
Balogh, T., Dobranyi, Z., Forgacs, T., Molnar, A., Szlobod, A.L., Gobbetti, E., Marton, F., Bettio, F., Pintore, G., Zanetti, G., Bouvier, E. Klein, R. (2006). An interactive multi-user holographic environment’, in SIGGRAPH ‘06: ACM SIGGRAPH 2006 Emerging Technologies, ACM Press, New York, NY, USA, 18.
Ezenwoke, A., Ezenwoke, O., Adewumi, A., Omoregbe, N. (2016). Wearable technology: opportunities and challenges for teach- ing and learning in higher education in developing countries. INTED2016 Proceedings, vol. 1, Valencia, España, 1872–1879.
Gallagher, M., Bayne, S. (2018). Future teaching trends: science and technology. Near Futu Teach, 1–10.
Katsioloudis, P., Jones, M. (2018). A Comparative Analysis of Holographic, 3D-Printed, and Computer- Generated Models: Implications for Engineering Technology Students’ Spatial Visualization Ability. Journal of Technology Education, 29 (2), 36-53.
Martín-Gutiérrez, J., Mora, C.E., Añorbe-Díaz, B., González-Marrero, A. (2017). Virtual technologies trends in education. Eurasia J. Math. Sci. Technol. Educ. 13, 469–486.
Mohd, N.M., Abd, N.D. (2016) A review of application of 3D hologram in education: a metaanalysis. In: 2016 IEEE 8th International Conference on Engineering Education Enhancing Engeering Education Through Academic Collaboration ICEED 2016, IEEE, 257–260.
Orcos, L., Magreñán, Á.A. (2018). The hologram as a teaching medium for the acquisition of STEM contents. Int. J. Learning Technology, Vol. 13, No. 2, 163-177.
Paredes, S. G., Vázquez, N. R. (2020) Is holographic teaching an educational innovation? vol. 14, 1321–1336.
Rivera, R., Tarín, C. (2015). Learning and teaching technology options, 1–134.
Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V.M., et al. (2016). Virtual laboratories for education in science, technology, and engineering: a review. Comput. Educ. 95, 309–327.
Redmond, P., Lock, J., Danaher, P. (2015). Educational innovations and contemporary technologies: enhancing teaching and learning, 1st edn. Palgrave Macmillan, Hampshire, 169.
Sando, Y., Satoh, K., Kitagawa, T., Kawamura, M., Barada, D., Yatagai, T. (2018). Super-wide viewing-zone holographic 3D display using a convex parabolic mirror. Scientific Reports, 8 (1), 1-8.
Subrahmanyam, V., Swathi K. (2018). Artificial Intelligence and its Implications in Education. Int. Conf. Improv. Access to Distance High. Educ. Focus Underserved Communities Uncovered Reg. Kakatiya University, 1–11.
Upadhye, S. (2013). Use of 3D Hologram Technology in Engineering Education. IOSR Journal of Mechanical and Civil Engineering, 62-67.
Zapata, L., & Larrondo, M. (2016). Models of collaborative remote laboratories and integration with learning environments. Int. J. Online Eng. 12, 14–21