MODIFIED METHOD OF LATTICE BOLTZMANN EQUATIONS FOR REGIONS WITH CURVILINEAR BOUNDARIES
DOI:
https://doi.org/10.18372/2310-5461.25.8227Keywords:
numerical simulation, Lattice Boltzmann method, curvilinear boundary, distribution functionAbstract
A modified mathematical method of lattice Boltzmann equations is offered. The offered method may be used for numerical modeling of fluid motion, based on finite space structure elements in the neighbourhood of a curvilinear boundary. The fluid movement is described based on the finite element spatial structure, considering the effect of particles’ reflection from solid boundary on the probability distribution function for the directions and speeds of movement. The two approaches of taking into account particles reflection are considered. In the first approach, the construction of the image of the target element in the direction of motion of the particles is done, and then the probability distribution functions of the real finite elements of the computational grid that host the superimposed image are adjusted. The second approach is based on a geometric construction made in the opposite direction, with a corresponding adjustment of the distribution functions for the transfer step. An algorithm of finding probability distribution functions and the force acting on the boundary is considered on an example of solving of the two-dimensional problem.
References
Tu J. Computational Fluid Dynamics, Second Edition: A Practical Approach / J. Tu, G. Heng Yeoh, C. Liu. — Butterworth-Heinemann, 2012. — 456 p.
Narvaez A. Evaluation of pressure boundary conditions for permeability calculations using the lattice-Boltzmann method /Ariel Narvaez Salazar, Jens Harting //Advances in Applied Mathematics and Mechanics, 2010. — Vol. 2, No. 5. — P. 685–700.
Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond /S. Succi. — Oxford University Press, 2001. — 304 p.
Perumal D. Application of Lattice Boltzmann Method to Fluid Flows in Microgeometries / D. Arumuga Perumal, Gundaravarapu V. S. Kumar and Anoop K. Dass. // CFD Letters. — 2010. — Vol. 2(2). — P. 75–84.
Perumal D. Numerical simulation of gaseous microflows by lattice Boltzmann method / D. Perumal, V. Krishna, G. Sarvesh and A. Dass // International Jour-nal of Recent Trends in Engineering. — 2009. — No. 1(5). — P. 15–20.
Реализация метода решеточных уравнений Больцмана для расчетов на GPU-кластере / Д. А. Бикулов, Д. С. Сенин, Д. С. Дёмин, А. В. Дмитриев, Н. Е. Грачев // вычислительные методы и программирование. — 2012. — Т. 13. — С. 13–19.
De Izarra L. High-order lattice Boltzmann models for gas flow for a wide range of Knudsen numbers / L. de Izarra, J.-L. Rouet, B. Izrar // Phys. Rev. E. — 2011. — Vol. 84, No. 6. — P. 1–7.
Rubinstein R. Theory of the lattice Boltzmann equation: Symmetry properties of discrete velocity sets / R. Rubinstein, L.-S. Luo // Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). — 2008. — Vol. 77: 036709.
Глазок О. М. Модифікований метод решітчастих рівнянь Больцмана з нерегулярною cіткою / О. М. Глазок // Наукоємні технології. — 2014. —
№ 4 (24). — С. 419–422.