A REVIEW OF CHALLANGES IN EFFICIENT UNDERWATER ACOUSTIC COMMINICATION

Authors

  • Anton Yanushevskyi National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
  • Oleksii National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

DOI:

https://doi.org/10.18372/2310-5461.67.20239

Keywords:

underwater, acoustic, communications, coacoustic, efficiency, limitations, shallow, sea, multipath, propagation, Doppler, spectral

Abstract

The article investigates the current state, technological solutions, and pressing issues of digital underwater acoustic communication (UAC), which is gaining increasing importance due to the development of marine resource extraction, the use of autonomous and remotely operated underwater vehicles, underwater drones, monitoring systems, and the construction of the "underwater Internet of Things." The introductory part of the article analyzes modern underwater communication methods — electromagnetic, optical, and acoustic — and highlights their limitations: electromagnetic communication underwater is limited to about 10 meters due to strong attenuation; optical communication has narrow directivity and is constrained by water transparency, typically reaching up to 100 meters; whereas acoustic communication remains the only suitable and universal means of communication over distances ranging from hundreds of meters to tens of kilometers. The main part of the article focuses on the characteristics of the acoustic channel in shallow water areas (up to 200 m depth), which are particularly important considering industrial and security activities. Issues such as multipath propagation, Doppler effects, geometric and energy range limitations, and factors restricting data transmission rates are discussed. A comparison of the efficiency of different underwater acoustic communication methods is provided. The conclusions emphasize that over recent decades underwater acoustic communication technologies have achieved data transmission rates up to 48 kbps at distances around 2 km with spectral efficiency up to 4 bits/s/Hz. Improvements in spectral efficiency have been achieved through the implementation of modern technologies such as OFDM, MIMO, and high-order modulation schemes (8-PSK, 16-QAM). At the same time, the limited frequency resource and complex underwater environment restricts further growth in data transmission speeds.

The authors identify key challenges for underwater acoustic communication — multipath propagation, Doppler shifts, and spectral spreading — which complicate the stability and reliability of communication. Directions for further research are proposed, including detail analysis of Doppler spreading features, the use of spatially separated antennas for small size underwater vehicles, synthesized beamforming patterns, and adaptive modulation and coding to maximize data rate and communication quality in complex and varying underwater environmental conditions, as well as the use of high-frequency bands to increase system throughput.

The practical value of the work lies in the in-depth analysis of existing solutions, identifying their advantages and disadvantages, and forming recommendations to enhance the efficiency and reliability of UAC systems in changing underwater environments. The article also highlights the problem of the lack of industry standardization (except for the JANUS protocol), which complicates interoperability among heterogeneous systems, especially in coastal zones with numerous users. The article offers a classification of underwater object interaction scenarios, provides a comparative analysis of environmental impacts on UAC systems, and outlines promising directions for further development of effective and reliable underwater acoustic communication systems.

Author Biographies

Anton Yanushevskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

Postgraduate

Oleksii, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

Doctor of Technical Sciences, Professor

References

1. Kumara S., Vatsb C. Underwater communication: A detailed review. CEUR Workshop Proceedings. 2021.

Al-Zhrani S., Bedaiwi N. M., El-Ramli I. F., Barasheed A. Z., Abduldaiem A., Al-Hadeethi Y. Underwater Optical Communications: A Brief Overview and Recent Developments. Engineered Science. 2021. Vol. 16. P. 146–186. DOI: https://doi.org/10.30919/es8d574.

LinkQuest Inc. LinkQuest Underwater Acoustic Modems. UWM2000 Specifications. URL: https://www.link-quest.com/html/uwm2000.htm (дата звернення: 28.01.2025).

LinkQuest Inc. LinkQuest Underwater Acoustic Modems. UWM1000 Specifications. URL: https://www.link-quest.com/html/uwm1000.htm (дата звернення: 28.01.2025).

Micron Modem – 2023 Datasheet, Rev. 6. Tritech International Ltd. 2023. URL: https://www.tritech.co.uk/files/Datasheets/Micron-Modem-2023-datasheet-rev6.pdf (дата звернення: 28.01.2025).

SAM-1 Technical Reference Manual / Desert Star Systems. 2019. 62 с. URL: https://desertstarsystems.nyc3.digitaloceanspaces.com/Manuals/SAM-1TechnicalReferenceManual.pdf (дата звернення: 28.01.2025).

Benson B., Caffe M., Hovem J. Design of a low-cost underwater acoustic modem. IEEE Embedded Systems Letters. 2010. Vol. 2, No. 3. P. 58–61. DOI: https://doi.org/10.1109/LES.2010.2050191.

Petroccia R., Alves J. The JANUS Underwater Communications Standard: From Promulgation to Present. Proceedings of the OCEANS 2024 – Singapore. Singapore, 2024. P. 1–9. DOI: https://doi.org/10.1109/OCEANS51537.2024.10682419.

Baggeroer A. B., Koelsch D. E., von der Heydt K., Catipovic J. DATS – A Digital Acoustic Telemetry System for Underwater Communications. OCEANS '81. Boston, MA, USA, 1981. P. 55–60. DOI: https://doi.org/10.1109/OCEANS.1981.

Von Der Heydt K. Design and performance analysis of a Digital Acoustic Telemetry System for the short range underwater channel. IEEE Journal of Oceanic Engineering. 1984. Vol. OE-9, No. 3. P. 242–252. DOI: https://doi.org/10.1109/JOE.1984.1145632.

Mackelburg G. R. Acoustic data links for UUVs. IEEE Conf. Proc. OCEANS’91 [Ocean Technologies and Opportunities in the Pacific for the 90’s]. Piscataway, NJ, USA: IEEE, 1991. Vol. 2. P. 1400–1406. DOI: https://doi.org/10.1109/OCEANS.1991.606496.

Jones J. C. et al. The design and testing of a DSP, half-duplex, vertical, DPSK communication link. Oceans '97. Halifax, NS, Canada, 1997. Vol. 1. P. 259–266. DOI: https://doi.org/10.1109/OCEANS.1997.634372.

Kaya A., Yauchi S. An Acoustic Communication System for Subsea Robot. OCEANS. Seattle, WA, USA, 1989. P. 765–770. DOI: https://doi.org/10.1109/OCEANS.1989.586677.

Stojanovic M., Catipovic J. A., Proakis J. G. Phase-coherent digital communications for underwater acoustic channels. IEEE J. Ocean. Eng. 1994. Vol. 19. P. 100–111. DOI: https://doi.org/10.1109/48.289455.

Ochi H., Watanabe Y., Shimura T. Experiments on acoustic communication with quadrature amplitude modulation in multipath environment. Jpn. J. Appl. Phys. 2004. Vol. 43, No. 5S. P. 3140–3145. DOI: https://doi.org/10.1143/JJAP.43.3140.

Eggen T. H. Underwater acoustic communication over Doppler spread channels: PhD thesis. Massachusetts Institute of Technology. Cambridge, MA, USA, 1997. 205 p. DOI: https://doi.org/10.1575/1912/5709.

Eggen T. H., Baggeroer A. B., Preisig J. C. Communication over Doppler spread channels. Part I: Channel and receiver presentation. IEEE J. Oceanic Eng. 2000. Vol. 25, No. 1. P. 62–71. DOI: https://doi.org/10.1109/48.820737.

Eggen T. H., Preisig J. C., Baggeroer A. B. Communication over Doppler spread channels. II. Receiver characterization and practical results. IEEE J. Oceanic Eng. 2001. Vol. 26, No. 4. P. 612–621. DOI: https://doi.org/10.1109/48.972101.

Johnson M., Brady D., Grund M. Reducing the computational requirements of adaptive equalization in underwater acoustic communications. OCEANS '95. San Diego, CA, USA, 1995. Vol. 3. P. 1405–1410. DOI: https://doi.org/10.1109/OCEANS.1995.528669.

Mesleh R., Haas H., Ahn C. W., Yun S. Spatial Modulation – A New Low Complexity Spectral Efficiency Enhancing Technique. Communications and Networking in China. Beijing, 2006. P. 1–5. DOI: https://doi.org/10.1109/CHINACOM.2006.344658.

Банкет В. Л., Незгазинська Н. В., Токар М. С. Методи просторово-часового кодування для систем радіозвязк. Цифрові технології. 2009. № 6. С. 5–166.

Roy S. et al. Enhanced underwater acoustic communication performance using space-time coding and processing. Oceans '04. Kobe, Japan, 2004. Vol. 1. P. 26–33. DOI: https://doi.org/10.1109/OCEANS.2004.1402890.

Roy S., Duman T. M., McDonald V., Proakis J. G. High-Rate Communication for Underwater Acoustic Channels Using Multiple Transmitters and Space–Time Coding: Receiver Structures and Experimental Results. IEEE J. Ocean. Eng. 2007. Vol. 32, No. 3. P. 663–688. DOI: https://doi.org/10.1109/JOE.2007.899275.

Nordenvaad M. L., Oberg T. Iterative Reception for Acoustic Underwater MIMO Communications. OCEANS 2006. Boston, MA, USA, 2006. P. 1–6. DOI: https://doi.org/10.1109/OCEANS.2006.307060.

Li B., Zhou S., Stojanovic M., Freitag L., Willett P. Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts. IEEE J. Ocean. Eng. 2008. Vol. 33, No. 2. P. 198–209. DOI: https://doi.org/10.1109/JOE.2008.920471.

Frassati F., Lafon C., Laurent P.-A., Passerieux J.-M. Experimental assessment of OFDM and DSSS modulations for use in littoral waters underwater acoustic communications. Europe Oceans 2005. Brest, France, 2005. Vol. 2. P. 826–831. DOI: https://doi.org/10.1109/OCEANSE.2005.1513163.

Ayela G., Nicot M., Lurton X. New innovative multimodulation acoustic communication system. Proc. IEEE Oceans Conf. 1994. Vol. 1. P. 292–295. DOI: https://doi.org/10.1109/OCEANS.1994.363896.

Czapiewska A., Łuksza A., Studański R., Wojewódka Ł., Żak A. Evaluation of Selected Modulation Techniques in Underwater Multipath Channel. IEEE Access. 2025. Vol. 13. P. 13395–13404. DOI: https://doi.org/10.1109/ACCESS.2025.3530948.

Кебкал К. Г., Кебкал А. Г., Яковлев С. Г. Спосіб цифрового зв’язку за багатопроменевими гідроакустичними каналами з використанням частотно-модульованого несучого сигналу. Акустичний журнал. 2004. Т. 50, № 2. С. 220–230.

Pelekanakis K., Paglierani P., Alvarez A., Alves J. Comparison of error correction codes via optimal channel replay of high north underwater acoustic channels. Computer Networks. 2024. Vol. 242. P. 110270. DOI: https://doi.org/10.1016/j.comnet.2024.110270.

Brekhovskikh L. M., Lysanov Yu. P. Fundamentals of Ocean Acoustics. 3rd ed. New York: Springer, 2003. 273 p. DOI: https://doi.org/10.1121/1.1792644.

Stojanovic M., Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Communications Magazine. 2009. Vol. 47, No. 1. P. 84–89. DOI: https://doi.org/10.1109/MCOM.2009.4752682.

Published

2025-10-09

How to Cite

Yanushevskyi, A., & Oleksii. (2025). A REVIEW OF CHALLANGES IN EFFICIENT UNDERWATER ACOUSTIC COMMINICATION. Science-Based Technologies, 67(3), 388–403. https://doi.org/10.18372/2310-5461.67.20239

Issue

Section

Electronics, electronic communications, instrumentation and radio engineering