ASSESSMENT OF THE EFFICIENCY OF CELLULOSE MEMBRANES WITH CARBON ADSORBENT APPLICATION
DOI:
https://doi.org/10.18372/2310-5461.65.19934Keywords:
modification, activated carbon, cellulose, miscanthus, productivity, selectivity, filtration materialAbstract
The article focuses on the production of a filtration material from oxidative-organosolv cellulose derived from miscanthus, utilizing a carbon adsorbent for water purification from suspended particles causing turbidity. A methodology for modifying activated carbon with a potassium permanganate solution was proposed. Studies were conducted on the oxidation of carbon with KMnO₄ solutions at concentrations ranging from 0.015 to 0.035 meq/dm³, with durations between 15 and 135 minutes. Experimental results established that the deposition degree of MnO₂ on activated carbon ranges from 13% to 30%, depending on the modification duration and the initial KMnO₄ solution concentration.
Regression equations were calculated, which adequately describe the experimental data and can be used as a mathematical model for the process of activated carbon oxidation. Using multicriteria optimization, compromise regions for conducting the carbon oxidation process were determined. A full factorial experiment established the optimal conditions for carbon treatment, corresponding to a duration of 55 minutes and a potassium permanganate solution concentration of 0.2 meq/dm³.
As a result of the delignification process of miscanthus stems in the acetic acid–hydrogen peroxide–citric acid system, oxidative-organosolv cellulose was obtained with a yield of 62.4% and a residual lignin content of 1.84% based on the absolute dry weight of the raw material, along with high strength characteristics. The cellulose obtained was subsequently used as a base material for water purification membranes.
The impact of using adsorptive material on the selectivity and productivity of cellulose filtration material was demonstrated. The addition of carbon adsorbent increases the productivity of membranes. It was determined that membranes made from modified cellulose fibers derived from miscanthus, containing adsorptive materials, are suitable for use in ultrafiltration processes.
References
Khilchevskyi V. K., Zabokrytska M. R. Khimichnyi analiz ta otsinka yakosti pryrodnykh vod : navch. posib. Lutsk: Vezha-Druk, 2021. 76 s.
Yurasov S. M. Metody otsinky yakosti pryrodnykh vod: konspekt lektsii. Odesa: Odeskyi derzhavnyi ekolohichnyi universytet, 2020. 102 s.
Wang L. K., Chen J. P., Hung Y. T., Shammas N. K. Membrane and Desalination Technologies. 2011. 716 p.
Pandova I., Rimar M., Panda A., Valicek J., Kusnerova M., Harnicarova M. A. (2020) Study of Using Natural Sorbent to Reduce Iron Cations from Aqueous Solutions, Int J Environ Res Public Health, 17 (10), 3686.
Khokhotva O. P., Butchenko L. I. (2022) Doslidzhennia protsesiv sorbtsiinoho vyluchennia fenolu kompozytsiinym sorbentom F300-MnO2, Visnyk NTU «KhPI». Seriia «Novi rishennia v suchasnykh tekhnolohiiakh», 1 (11), 64–68.
Aprilliani F., Warsiki E., Iskandar A. (2018). Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material, IOP Conference Series: Earth and Environmental Science, 141, 012003. https://doi.org/10.1088/1755-1315/141/1/012003
Barakan S., Aghazadeh V. (2021) The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review, Environ Sci Pollut Res, 28, 2572–2599. https://doi.org/10.1007/s11356-020-10985-9
Alkizwini R. S., Alquzweeni S. S. (2020) Modeling natural bentonite, thermal-modified bentonite and iron-modified bentonite with artificial neural network, sorption kinetics and sorption isotherms for simulated sorption tetracycline, International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-020-03004-4
Kuldeyev E., Seitzhanova M., Tanirbergenova S., Tazhu K., Doszhanov E., Mansurov Z., Azat S., Nurlybaev R., Berndtsson R. (2023). Modifying Natural Zeolites to Improve Heavy Metal Adsorption, Water, 15(12), 2215. https://doi.org/10.3390/w15122215
Syafalni S., Sing S. R. B., Zawawi M. H. (2014) Sorption of dye wastewater by using natural zeolite, anionic-cationic surfactant modified zeolite and cationic surfactant modified zeolite, World Appl. Sci. J., 32, 818–824.
Velarde L., Nabavi M.S., Escalera E., Marta-Lena Antti M. L., Akhtar F. (2023) Adsorption of heavy metals on natural zeolites; A review, Chemosphere, 328, 138508.
Rivera A., Hernandez D., Quinones L., Lazo L., Charnay C., Velazquez M. (2022). Cuban natural palygorskite nanoclays for the removal of sulfamethoxazole from aqueous solutions, ChemRxiv. https://doi.org/10.26434/chemrxiv-2022-s2hdm
Ngulube T., Gumbo J. R., Masindi V., Maity A. (2017). An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review, Journal of Environmental Management, 191, 35–57. https://doi.org/10.1016/j.jenvman.2016.12.031
Chenglong Xu, Yali Feng, Haoran Li, Yunhao Li, Yisong Yao (2024) Purification of natural palygorskite clay: Process optimization, cleaner production, mineral characterization, and decolorization performance, Applied Clay Science, 250. https://doi.org/10.1016/j.clay.2024.107268.
Rudenko V. H., Ivanenko I. M., Kosohina I. V., Burmak A. P. (2021) Novyi efektyvnyi vuhletsevyi adsorbent dlia znezaliznennia vody, Khimichni tekhnolohii ta inzheneriia, 1, 144– 54.
Barbash V. A., Trembus I. V., Skladannyi D. M. (2002) Optymizatsiia orhanosolventnykh sposobiv oderzhannia solomianoi tseliulozy, Naukovi visti NTUU «KPI», 5, 88–92.
Trembus I., Halysh V. (2019) Wheat straw solvolysis delignification, Journal of Chemical Technology and Metallurgy, 5 (54), 96-99.
Sokolovska N. V, Trembus I. V. (2018) Delihnifikatsiia pshenychnoi solomy v systemi CH3COOOH – H2O – H2O2, Wshodnioeropejskie Czasopismo Naukowe East European Scientific Journal, 20(2), 61–66.
Barbash V. A, Trembus I. V. (2002) Solvolizni varinnia tseliulozy iz pshenychnoi solomy, Naukovi visti NTUU «KPI», 1, 119–125.
Barbash V.A., Trembus I.V., Prymakov S. P., Kulik M. O. (2010) Modyfikovanyi ASAE sposib delihnifikatsii pshenychnoi solomy, Visnyk NTUU «KPI» Khimichna inzheneriia, ekolohiia ta resursozberezhennia, 2 (6), 92–96.
Sokolovska N. V., Konotopchyk A. V., Trembus I. V. (2019) Nyzkotemperaturna delihnifikatsiia pshenychnoi solomy peroksydom vodniu v seredovyshchi otstovoi kysloty, Molodyi vchenyi, 1(65), 282–286.
Barbash V. A., Trembus I. V., Zinchenko V. O. (2012) Resursozberihaiuchi tekhnolohii pereroblennia stebel miskantusa, Naukovi visti NTUU «KPI», 5, 92 – 96.