MODELING OF M2M TRAFFIC OF MODERN COMMUNICATION NETWORKS

Authors

  • Sergii Chumachenko National aviation University, Kiev, Ukraine
  • Bohdan Chumachenko National aviation University, Kiev, Ukraine
  • Maryna Maloied National aviation University, Kiev, Ukraine
  • Roman Odarchenko National aviation University, Kiev, Ukraine
  • Andrii Paziuk National aviation University, Kiev, Ukraine

DOI:

https://doi.org/10.18372/2310-5461.63.18947

Keywords:

Internet of Things, 5 G, M2M traffic, communication networks, aggregated traffic model, load intensity, failure probability, delivery probability

Abstract

The development of communication networks leads to the expansion of their capabilities in traffic transmission. In connection with the increase in the volume of processed and transferred data, in particular the traffic of transferring media files, data processing specialists strive to improve the quality of images by constantly improving the means and standards of multimedia presentation. It is important to note that user-generated media traffic is characterized by stability and predictability, as the data is transferred primarily in response to user requests. However, in addition to media traffic, today's networks face an increasing flow of data between devices, mostly within the concept of the Internet of Things. The peculiarity of M2M traffic is that it is generated by a significant number of devices, which can potentially be much larger than the number of ordinary users. This type of traffic differs from other priority aspects because the devices that generate it work on the basis of stable algorithms and do not pay much attention to other factors. This can increase network load and create additional vulnerabilities. In the context of this research, considerable attention is paid to the development of new technologies for efficient M2M traffic management. For example, LTE and 5G mobile network standards include mechanisms for servicing and managing M2M traffic.

The paper presents the results of M2M traffic analysis using the model proposed by 3GPP, which has been thoroughly analyzed and refined to improve its simulation. Analytical descriptions of the model and results of simulation modeling allow understanding the impact of M2M traffic on the quality of service in communication networks. The obtained results can be used both for modeling the traffic of M2M devices and for determining their parameters. For example, they can be used to develop algorithms for controlling such devices during network overloads.

Author Biographies

Sergii Chumachenko, National aviation University, Kiev, Ukraine

Assistant Professor at the Department of Telecommunication and Radio Electronic Systems, Faculty of Aeronautics, Electronics and Telecommunications

Bohdan Chumachenko, National aviation University, Kiev, Ukraine

Assistant Professor at the Department of Telecommunication and Radio Electronic Systems, Faculty of Aeronautics, Electronics and Telecommunications

Maryna Maloied, National aviation University, Kiev, Ukraine

Associate Professor of the Department of Telecommunication and Radio Electronic Systems, Faculty of Aeronautics, Electronics and Telecommunications

Roman Odarchenko , National aviation University, Kiev, Ukraine

Doctor of Technical Sciences, Professor

Andrii Paziuk, National aviation University, Kiev, Ukraine

Doctor of legal sciences, professor

References

Khan I., Kim K.-I. A comprehensive review of Internet of Things: Technology stack, middlewares, and fog/edge computing interface. Sensors. 2022. V. 22(3), P. 995.

Lin Y. C., Wang F. Machine learning techniques for recognizing IoT devices. 23rd International Computer Symposium. 2018. P. 673–680.

Deng L., Feng Y., Chen D., Rishe N. IoTSpot: Identifying the IoT devices using their anonymous network traffic data. 2019 IEEE Military Communications Conference. 2019. P. 1–6.

Althoubi A., Alshahrani R., Peyravi H. Delay analysis in IoT sensor networks. Sensors. 2021. V. 21(11), P. 3876.

Salman O., Elhajj I. H., Kayssi A., Chehab A. Data representation for CNN based internet traffic classification: A comparative study. Multimedia Tools and Applications. 2021. V. 80, P. 16951–16977.

Hamad S. A., Zhang W. E., Sheng Q. Z., Nepal S. IoT device identification via network-flow based fingerprinting and learning. 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE). 2019. P. 103–111.

Sivanathan A., et al. Characterizing and classifying IoT traffic in smart cities and campuses. 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2017. P. 559–564.

Cheng W., Ding Z., Xu C., Wu X., Xia Y., Mao J. RAFM: A real-time auto detecting and fingerprinting method for IoT devices. Journal of Physics: Conference Series. 2020. V. 1518(1), 012043.

Hameed A., Leivadeas, A. IoT traffic multi-classification using network and statistical features in a smart environment. IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). 2020. P. 1–7.

Кармазін, В. С., Коваленко, В. А. Особливості розвитку інтернету речей у сучасному світі. Науковий вісник Полтавського університету економіки і торгівлі. 2019. № 2, С. 15-23.

Bai L., Yao L., Kanhere S. S., Wang X., Yang Z. Automatic device classification from network traffic streams of Internet of Things. In 2018 IEEE 43rd Conference on Local Computer Networks (LCN). 2018. P. 1–9.

Василенко Т. М. Дослідження моделей трафіку Інтернету речей в умовах урбанізованого середовища. Технічні науки. 2021. № 6(2), С. 45-54.

Павленко І. Г. Використання доповненої реальності в освітньому процесі: досвід і перспективи. Інформаційні технології в освіті. 2020. № 45, С. 132-141.

Aksoy A., Gunes M. H. Automated IoT device identification using network traffic. 2019 IEEE International Conference on Communications. 2019. P. 1–7.

Yu X., Liu H., Zhao J., Xiong K. ARIoT: Augmented Reality and Internet of Things in healthcare. 2020 IEEE International Conference on Consumer Electronics (ICCE). 2020. P. 1-2.

Степаненко, О. М. Аналіз концентрації трафіку у бездротових сенсорних мережах. Збірник наукових праць Українського державного університету залізничного транспорту. 2018. № 1(35), С. 112-120.

3GPP. Technical Report 37.868: Study on RAN improvements for machine-type communications. 3rd Generation Partnership Project (3GPP). 2011.

Бондаренко В.А. Аналіз біноміальних розподілів для моделювання M2M трафіку в мережах. Вісник Національного технічного університету «Харківський політехнічний інститут». 2022. № 34(2), С. 56-67.

Smith J. D. Binomial distributions in modeling network traffic. Journal of Computer Networks and Communications. 2015. V. 45(3). P. 134-145.

Johnson N. L., Kotz S., Kemp A. W. Univariate Discrete Distributions (2nd ed.). John Wiley & Sons. 1992. 582 p.

Nguyen D., Nguyen, H. Traffic concentration models in wireless sensor networks. IEEE Communications Magazine. 2018. V. 56(12), P. 158-163.

Bianchi G., Tinnirello I. Kalman-based estimation of channel holding times in IEEE 802.11e EDCA WLANs. IEEE Transactions on Wireless Communications. 2003. V. 2(2), P. 296-305.

Brown T. X., Mohan S., Frolik J. Modeling M2M traffic for IoT applications. IEEE Internet of Things Journal. 2016. V. 3(6). P. 1144-1155.

Błażewicz J., Chmieliński K., Kubiak W., Węglarz J. Traffic Modeling and Flow Theory. European Journal of Operational Research. 1996. V. 90(3). P. 459-474.

Bianchi G., Fratta L., Oliveri M. (2000). Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs. ACM SIGCOMM Computer Communication Review. 2000. V. 30(4). P. 27-38.

Published

2024-10-04

Issue

Section

Electronics, telecommunications and radio engineering