INCREASING THE EFFICIENCY OF GAS DISTRIBUTION STATION OP-ERATION IN CONDITIONS OF VARIABLE CAPACITY

Authors

  • Larysa Volianska National aviation University, Kiev, Ukraine
  • Galyna Nikitina National aviation University, Kiev, Ukraine
  • Valerii Ratynskyi National aviation University, Kiev, Ukraine
  • Ivan Babichev National aviation University, Kiev, Ukraine

DOI:

https://doi.org/10.18372/2310-5461.62.18818

Keywords:

gas distribution station, gas turbine, turbine expander, pressure drop, throttle, natural gas

Abstract

The article is devoted to the study of increasing the efficiency of gas distribution stations through modernization and technical re-equipment. The problem of efficient use of the potential energy of natural gas at gas distribution stations of gas supply systems is considered. The reduction in gas pressure during the transition from the main gas pipeline to the distribution system is carried out by throttling in the reduction unit of the gas distribution station. In this process, the potential energy of the gas is lost without doing any work.

The article proposes to increase the efficiency of converting the potential energy of gas into electrical energy through the introduction of turboexpander units. By recycling systems based on turbo-expander electric generating units and aggregates, they simultaneously reduce and regulate gas pressure during its expansion in the machine, as well as obtain mechanical work on the shaft and convert it into electricity.

Increasing the efficiency of gas distribution stations is possible by a complete modernization of the station if it is economically reasonable or using limited, low-cost measures to reconstruct individual components or the piping of the station. The article analyzes the increase in energy efficiency of technological processes of a gas distribution station by the use of low-cost measures. Identification of capacity reserves of a gas distribution station and reconstruction of individual sections of the station in order to increase capacity make it possible to use the station under conditions of increased load, i.e. ensure compliance with the design and operational performance of the gas distribution station.

A mathematical model has been formed to study the gas flow in the gas pipeline of the reduction line after the gas pressure regulator and the boundary conditions for carrying out calculations have been established. Using a mathematical model, the gas flow in the reduction line after the pressure regulator valve was simulated under different operating conditions. A thermodynamic calculation of one of the options for a low-cost measure is given. Results are presented that confirm the possibility of utilizing the energy of compressed natural gas during the reduction process, even with high irregularity of gas selection by consumers.

Author Biographies

Larysa Volianska, National aviation University, Kiev, Ukraine

PhD, Associate Professor of Department of Aviation Engines

Galyna Nikitina, National aviation University, Kiev, Ukraine

senior lecturer of Department of Aviation Engines

Valerii Ratynskyi, National aviation University, Kiev, Ukraine

PhD, Associate Professor of Department of Aviation Engines

Ivan Babichev, National aviation University, Kiev, Ukraine

Postgraduate Student

References

Rybitskyi I.V., Trofimchuk V. I., Kogut G.M. Enhancing the efficiency of gas distribution stations operation by selecting the optimal gas pressure and temperature parameters at the station outlet. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2020. № 3. Pp. 47-52. doi.org/10.33271/nvngu/2020-3/047

International Energy Agency. Energy Efficiency 2023. https://www.iea.org/reports/energy-efficiency-2023 (дата звернення: 03.03.2024)

Козак Л.Ю. Енергозаощадження в нафтогазовидобувній галузі: монографія. Івано-Франківськ, 2007. 136 с.

Говдяк Р.М. Шляхи підвищення енергоекологічної безпеки та ефективності роботи магістральних газопроводів України. Розвідка та розробка нафтових і газових родовищ. 2012. № 1(42). С. 17-24.

Osipov S., Zlyvko O., Bychkov N., Kharlamova D., Zaryankin A. Increasing the efficiency of using the natural gas potential energy in turbo-expander units for power generation. 19th conference on power system engineering. Pilsen, Czech Republic. 2020. Vol. 2323, Issue 1. doi.org/10.1063/5.0043465

Davide B., Devia F., Brunenghi M.M., et al. Waste energy recovery from natural gas distribution network: CELSIUS project demonstrator in Genoa. Sustainability. 2015. vol. 7. No. 12. Рр. 16703–16719. doi.org/10.3390/su71215841

Турбодетандери та парові турбогенератори на базі струминно-реактивних турбін URL: https://fluitech.com.ua/ru/turbodetanderyi-i-parovyie-turbogeneratoryi-na-baze-struyno-reaktivnyih-turbin/ (дата звернення: 20.02.2024)

G. Barone, A. Buonomano, F. Calise and A. Palombo. Natural gas turbo-expander systems: A dynamic simulation model for energy and economic analyses. Thermal science. Year 2018. Vol. 22. No. 5. pp. 2215-2233. doi.org/10.2298/TSCI180109276B

Говдяк Р.М. Утилізація енергії тиску природного газу в турбодетандерних установках на об'єктах газової промисловості. Розвідка та розробка нафтових і газових родовищ. 2014. № 1. С. 7-12.

Костенко Д.А., Дмитренко В.О. Енергозберігаючий потенціал надлишкового тиску природного газу у газотранспортній системі України. Нафтова і газова промисловість. 2003. № 1. C. 54-61.

Репін Л.А. Можливості використання енергії тиску природного газу на малих газорозподільних станціях. Енергозбереження. 2004. №3. С. 34-39.

Михаленко В.А., Бєлінський А.В., Варламов Н.В. та ін Науково-методичні основи концепції маловитратної реконструкції та технічного переозброєння газорозподільних станцій. Газова промисловість. 2016. № 9. С. 72-81.

Belinskiy1 A.V., Rebrov1 O.I., Rechinskiy S.N. Low-cost ways to increase productive capacity of gas-distributing stations in operation. Scientific and technical collection - News of Gas Science. 2018. №2 (34). pp. 88-99.

Belinskiy A.V., Rebrov O.I. Development and approbation of a methodological approach to the justification of measures of low-cost technical modernization of gas distribution stations/ Oil and Gas Territory. 2016. Vol.12. Pp. 54-61.

Daneshi H., Zadeh H.K., Choobari A.L. Turboexpander as a distributed generator/ Proceedings of the Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh USA. 2008. pp. 1–7. DOI:10.1109/PES.2008.4596583

Kuczynski S., Łaciak M., Olijnyk A., Szurlej A., Włodek T. Techno-Economic Assessment of Turboexpander Application at Natural Gas Regulation Stations/ Energies. 2019. Vol. 12(4).755. doi.org/10.3390/en12040755

Rutkowski M.A., Shybeka A.S., Halynia K.I. Hydraulic Calculation of Copper Pipelines for Heating and Internal Gas Supply Systems. Science &Technique. 2018. Vol. 17(6). Pp. 508-514. doi.org/10.21122/2227-1031-2018-17-6-508-514

Іонін А.А., Жила В.А., Артихович В.В., Пшонік М.Г. Газопостачання. за заг. ред. В.А. Жили. 2013. 472 с.18 ДБН Газопостачання 2.5-20:2018.

Published

2024-07-29

Issue

Section

Transport, transport technology