ANALYSIS OF METHODS FOR ENHANCING SPECTRAL EFFICIENCY IN INFORMATION SYSTEMS
DOI:
https://doi.org/10.18372/2310-5461.67.18510Keywords:
signal analysis, spectral efficiency, chaotic signals, stochastic signals, interference resistance, frequency resourcesAbstract
This article is devoted to the study of the physical properties of deterministic, chaotic, and stochastic signals used in modern information systems with the aim of enhancing their spectral efficiency. Special attention is given to chaotic and stochastic signals, which, due to their unique structures, ensure a high level of information security. However, they require further development to achieve optimal utilization of the frequency spectrum.
The study addresses a pressing issue in communication systems: the need to balance high spectral efficiency with robust data protection and interference resilience. Deterministic signals, such as harmonic signals, traditionally used in narrowband systems, are characterized by simplicity and predictability but suffer from low spectral efficiency and poor resistance to interference. In contrast, chaotic and stochastic signals exhibit significant advantages in terms of security and interference immunity but require advanced signal processing techniques to overcome challenges associated with their wide spectral bandwidth and energy consumption.
The research methodology integrates mathematical modeling and signal analysis. Traditional approaches, such as Fourier transformation, wavelet transformation, and Hilbert transformation, are compared with innovative techniques, including Volterra series and Karhunen–Loève transformation. The comparative analysis is based on evaluating spectral efficiency, interference resilience, and the energy requirements of different signal types.
The results demonstrate that chaotic signals outperform deterministic and stochastic signals in terms of spectral efficiency across broader frequency ranges. However, chaotic signals require more sophisticated processing methods to ensure their stability and reliability in modern communication systems. Stochastic signals, while offering superior interference resistance and information security, exhibit lower spectral efficiency due to their broad frequency spectrum and uneven energy distribution.
Innovative approaches, such as Volterra series and Karhunen–Loève transformation, significantly improve the spectral efficiency of chaotic and stochastic signals by reducing redundancy and optimizing frequency utilization. These findings highlight the need for integrating advanced signal processing methods into information systems to enhance their performance and reliability.
The study's results have practical implications for the development of advanced communication systems, such as cellular networks, the Internet of Things, and satellite communication systems, where high data confidentiality and efficient spectrum usage are critical.
References
Фалькович С.Е., Костенко П.Ю., Основи статистичної теорії радіотехнічних систем. Х.: ХАІ, 2005. 389 с.
Van Trees H. L. Detection, Estimation, and Modulation Theory. Wiley, 2001. 1408 с.
Cover T. Information Theory and Statistics. Wiley, 1991. 336 с.
Oppenheim A. V. et al. Signals and systems. – Upper Saddle River, NJ : Prentice hall, 1997. Т. 2. С. 74–102.
Roberts, Richard A., and Clifford T. Mullis. Digital signal processing. Addison–Wesley Longman Publishing Co., Inc., 1987.
Mallat S. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 2009. 805 с.
Cover T. M., Thomas J. A. Elements of Information Theory. 2nd Edition. Wiley–Interscience, 2006. 768 с.
Васюта, К. С., Чечуй О. В., Глущенко М. О. Динамічний хаос в телекомунікаційних системах. Системи обробки інформації. 2010. Т. 1. С. 13–16.
Костенко П. Ю., Слободянюк В. В., Волинець С. В., Крючка М. Л. Аналіз IID–скритності безперервних хаотичних сигналів. Системи обробки інформації. 2018. № 1(152). С. 20–26. https://doi.org/10.30748/soi.2018.152.03.
Ling F. Nonlinear System Identification by Volterra and Wiener Models. IEEE Signal Processing Magazine. 2006. Vol. 14. P. 14–32.
Tianxing C., Tianfang C. Signal processing of high–noisy chaotic data. Phys. scr. 2000. v.6 l. №l. P.46–48.
Kostenko P., Vasiuta K., Symonenko S. Improving communication security by complicating chaotic process attractor using linear transform with Mandelbrot kernel. Radioelectronics and Communications Systems. 2010. No. 12(53). P. 636–643. http://doi.org/10.3103/s0735272710120022.
Розенвассер Д. М. Спектральна еффективність корегуючого кодування. Проблеми телекомунікацій. 2012. № 4 (9). С. 86 – 95.
Kay S. M. Fundamentals of Statistical Signal Processing: Detection Theory. Prentice Hall, 1998. Т. 2. С. 512.
Papoulis A., Pillai S. U. Probability, Random Variables, and Stochastic Processes. 4th Edition. McGraw Hill, 2002. 852 с.
International Telecommunication Union. Recommendation ITU-R SM.1046-3: Definition of spectrum use and efficiency of a radio system. Geneva, 2017.
Mandelbrot B. B. Fractals and Chaos: The Mandelbrot Set and Beyond. Springer, 2004. 308 с.
Dai Linglong, Wang Bichai, Yuan Yifei, Han Shuangfeng, Chih–Lin I, and Wang Zhaocheng. Non–orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine. 2015. Vol. 53, no. 9. P. 74–81.
Харлай Л.О., Кунах Н.І., Манько О.О., Скубак О.О., Нікіфоренко К.Б. Методи підвищення інформаційно–пропускної здатності волоконно–оптичних трактів. Інфокомунікаційні та комп’ютерні технології. № 2 (02), 2021. С. 82–94.
Бондарєв О. Огляд методів множинного доступу до бездротового зв'язку. Частина 1. Як поділити спектр: Частотно–часовий поділ. URL: https://habr.com/ru/companies/etmc_exponenta/articles/677524/ (дата звернення: 07.03.2024).
Shannon C. E. A Mathematical Theory of Communication. Bell System Technical Journal. 1948. Vol. 27. P. 379–423.
Hofstätter, Harald (25 October 2015). "Calculation of the Feigenbaum Constants". www.harald–hofstaetter.at. Retrieved 7 April 2024.
Proakis J. G., Manolakis D. G. Digital Signal Processing: Principles, Algorithms, and Applications. Prentice Hall, 2007. 992 с.
Coifman R., Wickerhauser M. V. Entropy–based Algorithms for Best Basis Selection. IEEE Transactions on Information Theory. 1992. Vol. 38, No. 2. P. 713–718.
Войтенко А., Романюк С. Застосування вейвлет–перетворення для аналізу сигналів. Системи обробки інформації. 2020. №2. С. 25–31.
Первунінський С.М., Дідковський Р.М. Обчислення ймовірності помилки приймача фазоманіпульованного шумового сигналу методом характеристичних функцій. Наукові праці ОНАЗ ім. О.С. Попова. 2011. №1. С. 33–42.