TECHNOLOGIES AND DEVELOPMENTS FOR HYDROGEN PRODUCTION (REVIEW)

Authors

  • Kostyantyn Simeiko Institute of Safety Problems of NPP of the National Academy of Sciences of Ukraine, Chornobyl (Kyiv region), Ukraine
  • Ihor Trofimov National aviation University, Kiev, Ukraine
  • Oleksiy Zagrebelnyi Gas Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • Oleg Shulga JSC "Kyivoblgaz", Boyarka (Kyiv region), Ukraine
  • Oleksiy Kozhan Gas Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.18372/2310-5461.59.17951

Keywords:

hydrogen, hydrogen-containing gas, hydrogen energy, technologies, environmental safety

Abstract

The article considers the issues of modern technologies for hydrogen production and development of technologies for its production. The main purpose of the work was the analysis of industrial technologies and scientific research aimed at obtaining hydrogen to determine the most optimal ways to produce it. The article describes technological processes, main advantages and disadvantages of technologies and developments for the production of hydrogen and hydrogen-containing gas. The article also considers the needs of hydrogen use by both industry and the population. Due to the fact that the combustion of hydrogen produces water, it is an energy-efficient and environmentally friendly energy carrier. Also, hydrogen is used in many industries, namely: in chemical synthesis, oil refining, heat treatment of metals, in the production of vegetable oils, glass industry, in cooling systems in energy, transport and other industries. The choice of the most cost-effective and environmentally friendly method of hydrogen production will further develop its wider use in energy, transport and metallurgy to replace technologies with high carbon dioxide emissions. The main industrial process for the production of hydrogen and hydrogen-containing gases is steam catalytic conversion of hydrocarbons (natural gas, gas condensate, light oil fractions). According to the authors, the following seven alternatives to hydrogen production may have the potential for industrial implementation: high-temperature pyrolysis of natural gas, pyrolysis and gasification of biomass, fermentation of biomass flows into biogas combined with biogas conversion, thermochemical splitting of water, photocatalysis (using photoelectrochemical cells (PECs), supercritical gasification of water by biomass, electrolysis using excess electricity.The research results can be applied in the energy industry, the transport industry, in particular in the operation of spacecraft. The results of the article can be applied in practice by power engineers, expert chemmotologists, as well as scientists involved in the development of new technologies for hydrogen production.

Author Biographies

Kostyantyn Simeiko, Institute of Safety Problems of NPP of the National Academy of Sciences of Ukraine, Chornobyl (Kyiv region), Ukraine

Doctor of Technical Sciences, Head of the Laboratory of Irradiated Graphite Research

Ihor Trofimov, National aviation University, Kiev, Ukraine

Candidate of Technical Sciences, Associate Professor

Oleksiy Zagrebelnyi, Gas Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Postgraduate

Oleg Shulga, JSC "Kyivoblgaz", Boyarka (Kyiv region), Ukraine

Doctor of Law

Oleksiy Kozhan, Gas Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Candidate of Technical Sciences, Associate Professor

References

ЄК оголосила про початок «водневої революції» в енергетиці URL: https://mind.ua/news/20213033-ek-ogolosila-pro-pochatok-vodnevoyi-revolyuciyi-v-energetici (дата звернення 10/07/2022)

Dolan, Connor, Gangi, Jennifer, Homann, Quailan, Fink, Victoria, and Kopasz, John. (2019) Fuel Cell Technologies Market Report. United States. p.77, 2020. doi:10.2172/1814929.

“Government launches £2 million competition to promote roll-out of hydrogen-fuelled fleet vehicles” (2016) / Department for Transport of United Kingdom. URL: https://www.gov.uk/government/news/government-launches-2-million-competition-to-promote-roll-out-of-hydrogen-fuelled-fleet-vehicles (access data 22/07/2023)

Hydrogen Cars Now. n.d. “BMW Series 5 GT Hydrogen.” Hydrogen Cars Now website, accessed June 19, 2019. URL: https://www.hydrogencarsnow.com/index.php/bmw-series-5-gt-hydrogen.

Office of Energy Efficiency & Renewable Energy. URL: https://www.energy.gov/eere/ fuelcells/fuel-cell-technologies-office (access data 22/07/2023)

Щодо розбудови в Україні водневої енергетики URL: https://www.ntseu.net.ua/stories/549-hydrogen-energy (дата звернення 22/07/2023)

«Енергоатом» і «Нафтогаз» домовилися про співпрацю у сфері водневої енергетики URL: https://mind.ua/news/20216209-energoatom-i-naftogaz-domovilisya-pro-spivpracyu-u-sferi-vodnevoyi-energetiki (дата звернення 22/07/2023)

Karp I.M. Hydrogen in electric and transport power engineering. Tekhnichna elektrodynamika, No 1, 2020. P. 64-70. DOI: https://doi.org/10.15407/techned2020.01.064

Hydrogen production and storage R&D priorities and gaps. OECD/IEA, 2005. – 36 p.

V.V. Solovey, A.A. Shevchenko, M.M. Zipunnikov, A.L. Kotenko, Nguyen Tien Khiem, Bui Dinh Tri, Tran Thanh Hai Development of high pressure membraneless alkaline electrolyzer. International Journal of Hydrogen Energy.Volume 47, Issue 11,2022, Pages 6975-6985, URL: https://doi.org/10.1016/j.ijhydene.2021.01.209.

Пaт. Укрaїни 35677 Спосiб пiдвищення ефективностi електролiзу МПК: C25B 1/00 / С.A. Русaков; зaявник i пaтентовлaсник: ВAТ «Хaртрон». – № u201807114; зaявл. 22.05.2009; опубл. 25.09.2009, Бюл. №18. – 2 с.

Hydrogen Production: Electrolysis. Department of Energy, Office of Energy Efficiency & Renewable Energy, https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis (access data 21/08/2023)

Ramato Ashu Tufaa, Jaromír Hnáta, Michal Němečeka, Roman Kodýma, Efrem Curciobc, Karel Bouzeka Hydrogen production from industrial wastewaters: An integrated reverse electrodialysis - Water electrolysis energy system. Journal of Cleaner Production. 2018. Volume 203. P. 418-426. DOI: 10.1016/j.jclepro.2018.08.269

New Catalyst Efficiently Produces Hydrogen from Seawater. ScienceDaily, 11 Nov. 2019, www.sciencedaily.com/releases/2019/11/191111180111. htm.

Haotian Wang, Hyun-Wook Lee, Yong Deng, Zhiyi Lu, Po-Chun Hsu, Yayuan Liu, Dingchang Lin & Yi Cui Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature communications. 2015. Macmillan Publishers Limited. https://doi.org/10.1038/ncomms8261 – 8 p.

Hy.GEN HYDROGEN GENERATORS URL: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming (access data 21/08/2023)

Yaser Khojasteh, Salkuyeh Bradley A. Saville Heather L. MacLean Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. International Journal of Hydrogen Energy. 2017. Vol. 42, Issue 30. P. 18894-18909. https://doi.org/10.1016/j.ijhydene.2017.05.219

Gary J.Stiegela, Massood Ramezanb Hydrogen from coal gasification: An economical pathway to a sustainable energy future International Journal of Coal Geology. 2006. Vol. 65, Issues 3–4,– P. 173-190.

Xing L. Yan, Ryutaro Hino Nuclear Hydrogen Production Handbook. Taylor and Francis Group LLC. 2011. 433 p.

Проект Дорожньої кaрти для виробництвa тa використaння водню в Укрaїнi / ЄЕК ООН, 2021 р. 99с.

Водень в aльтернaтивнiй енергетицi тa новiтнiх технологiях/ зa ред. В.В. Скороходa, Ю.М. Солонiнa. К.: «КIМ», 2015. 294 с. ISBN 978-617-628-045-3.

Yakovlieva A., Boichenko, S., Kale, U., Nagy A. Holistic approaches and advanced technologies in aviation product recycling, Aircraft Engineering and Aerospace Technology, 2021, Vol. 93. No. 8, p. 1302-1312 https://doi.org/10.1108/AEAT-03-2021-0068.

A.Ghimire, L. Frunzo, F. Pirozzi, Er.Trably, R. Escudie, P.N.L. Lens, G. Esposito A review on dark fermentative biohydrogen production from organic biomass : Process parameters and use of by-products. Applied Energy. 2015. 144. P.73-95. DOI:10.1016/j.apenergy.2015.01.045

Shamanskyi S., Boichenko S., Khrutba V., Barabash О., Yakovlieva A., Shkilniuk І., Topilnyckyi P., Pavliukh, L. Improving the photobioreactor operation efficiency in the technological scheme of wastewater treatment, Eastern-European Journal of Enterprise Technologies, 2021, Vol. 6, No. 10 (114), p. 6-15, https://doi.org/10.15587/1729-4061.2021.248746.

Patrick C. Hallenbeck, Mona Abo-Hashesh, Dipankar Ghosh Strategies for improving biological hydrogen production. Bioresource Technology. 2012. 110. P. 1–9.

Venkata Mohan, S. Waste To renewable energy: A sustainable and green approach towards production of biohydrogen by acidogenic fermentation. Sustainable Biotechnology; Springer: 2012. P.129– 164.

Kuppam Chandrasekhar, Yong-Jik Lee and Dong-Woo Lee Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes. Int. J. Mol. Sci. 2015. 16 P.8266-8293. DOI:10.3390/ijms16048266

Dayton D. A Review of the Literature on Catalytic Biomass Tar Destruction. Milestone Completion Report. Golden (USA): NREL. 2002. 33 p.

Singh R.N., Singh S.P., Balwanshi J.B. Tar removal from Producer Gas: A Review. Research Journal of Engineering Sciences. 2014. 3, No 10. P. 16-22.

Abu El-Rub Z., Bramer E. A., Brem G. Review of Catalysts for Tar Elimination in Biomass Gasification Processes Ind. Eng. Chem. Res. 2004. 43, No 22. P. 6911-6919.

Yung M.M., Jablonski W.S., and Magrini-Bair K.A. Review of Catalytic Conditioning of Biomass-Derived Syngas. Energy & Fuels. 2009. 23. P. 1874–1887.

Demirbas A. Yields of hydrogen of gaseous products via pyrolysis from selected biomass samples. Fuel. 2001. 80, No 13. P. 1885-1891.

Artetxe M., Lopez G., Amutio M., Elordi G., Bilbao J., Olazar M. Light olefins from HDPE cracking in a two-step thermal and catalytic process. Chemical Engineering Journal. 2012. 207 208. P. 27-34. DOI: 10.1016/j.cej.2012.06.105

Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2. Fuel. 2006. 85. P. 323–332.

Sago F., Fukuda S., Sato K., et al. Catalytic behavior of Ni/ZrxTi1"xO2 and the effect of SiO2 doping in oxidative steam reforming of n-butane. Int. J. Hydrogen Energy. 2009. 34. P. 8046–8052.

Boichenko, S., Danilin, O., Shkilniuk, I., Yakovlieva, A., Khotian, A., Pavlovskyi, M., Lysak, R., Shamanskyi, S., Kryuchkov, A., & Tarasiuk, O. (2023). Substantiating the expediency of using hydrogen fuel cells in electricity generation. Eastern-European Journal of Enterprise Technologies, 3(8 (123), 17–29. https://doi.org/10.15587/1729-061.2023.280046.

Lim S.-S. S., Lee H.-J. J., Moon D.-J. J., et al. Autothermal reforming of propane over Ce modified Ni/LaAlO3 perovskite-type catalysts. Chem. Eng. J. 2009. 152. P. 220–226.

Sato K., Nagaoka K., Nishiguchi H., Takita Y. n-C4H10 autothermal reforming over MgO-supported base metal catalysts. Int. J. Hydrogen Energy. 2009. 34. P. 333–342.

Кучерук Д.Д., Дульневa Т.Ю., Редькович В.I. Електробaромембрaнне очищення води вiд iонiв Zn2+ iз супутнiм видiленням водню тa лугу. Вiсник НТУУ “КПI”. Cерiя “Хiмiчнa iнженерiя, екологiя тa ресурсозбереження”. 2012. № 2 (10). С. 74–78.

Пaт. № 80088 Укрaїнa, MПК 8C02 F 1/46 (2006.01), B01D 39/20 (2006.01). Пристрiй для очищення води вiд вaжких метaлiв / Гончaрук В.В., Дульневa Т.Ю., Кучерук Д.Д., Редькович В.I. № U 2012 13958;зaявл. 07.12.2012; опубл. 13.05.2013, Бюл. № 9.

B. Stepasiuk, T. Haievska, O. Spaska, Yu. Bilokopytov, S. Boichenko, Yakovlieva A. Catalytic processing of organochlorine wastes into valuable monomers. Каталіз та нафтохімія. 2021. № 31. С. 41 – 47. https://kataliz.org.ua/arhiv/31/31_2021_en.html.

Liu Z., Green W.H. Analysis of adsorbent-based warm CO2 capture technology for integrated gasification combined cycle (IGCC) power plants. Industrial and Engineering Chemistry Research. 2014. - 53, No 27. P. 11145-11158.

І.Л. Трофімов, С.В. Бойченко, І.О. Ландарь. Огляд сучасного стану і перспектив використання ракетних палив. Наукоємні технології. 2020. №4. С. 521-533. (https://doi.org/10.18372/2310-5461.48.15092).

Brau J.-F., Morandin M. Biomass-based hydrogen for oil refining: Integration and performances of two gasification concepts. International Journal of Hydrogen Energy. 2014. 39, No 6. - P. 2531–2542.

Paunovic V., Zichittella G., Moser M., Amrute A.P., Perez-Ramirez J., Catalyst design for natural-gas upgrading through oxybromination chemistry, Nat. Chem. 2016. №8. P 803–809. DOI:10.1038/nchem.2522

Gur T.M., Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas, Prog. Energ. Combust.. № 54. 2016. P. 1-64. DOI:10.1016/j.pecs.2015.10.004

O. Staples, J.S. Mohar, D. Mindiola High-Throughput Experimentation for Resource-Efficient Discovery of Methane Functionalization Catalysts. The Power of High-Throughput Experimentation: Case Studies from Drug Discovery, Drug Development, and Catalyst Discovery (Volume 2). 2022. - P.123-145. DOI:10.1021/bk-2022-1420.ch008

Pat. US № 5,486,216 C10L 5/32 Coke having its pore surfaces coated with carbon and method of coating/ Y. Shigeno, J.W. Evans. Applicant and patent holder: The Regents of the University of California, Oakland, Calif. Appl. № 370,215. Appl. date: 4.06.1992: Publ. date: 6.01.1995.

Pat. US № 6,670,058 B01J 19/24 (20060101); B01J 8/38 (20060101); B01J 8/24 (20060101) Thermocatalytic process for CO2-free production of hydrogen and carbon from hydrocarbons / Muradov, Z. Nazim. Applicant and patent holder: University of Central Florida Appl. № 09/824,437. Appl. date: 2.04.2001; Publ. date: 30.12.2003.

50. Пaт. Укрaїни № 112778, МПК C01B 3/28 (2006.01), C01B 31/02 (2006.01) C01B 3/30 (2006.01) / Х-Юр. Мaaс, Ф. Гьоке, От. Мaххaммер, М. Гуцмaнн Мaркус, К. Шнaйдер, В. Хортмут, Aн. Боде, Д. Клiнгер, М. Керн, Г. Колiос. Зaявник тa влaсник: Лiнде aкцiенгезельшaфт, БAСФ СЕ. Зaявл. 05.07.2012, опубл. 25.10.2016. № зaявки: a 2014 01039. Бюл.№ 20.

Пaт. 134616 Укрaїнa, МПК (2019.01) C01B 3/00, C01B 2/06 (2006.01). Спосiб одержaння водню / К.В. Сiмейко, Б.I. Бондaренко, О.П. Кожaн, В.М. Дмiтрiєв, В.С. Рябчук, М.A. Сидоренко, Я.О. Iвaчкiн, О.В. Мaрaсiн; зaявник i пaтентовлaсник: Iнститут гaзу НAН Укрaїни. № u 2018 12786. зaявл. 22.12.2018; опубл. 25.04.2019, Бюл. № 10.

K.V. Simeiko, B.K. Ilienko, M.A. Sidorenko Electrothermal fludized bed technique using for realization of high-temperature technological processes (review). Energy Technologies & Resource Saving, 2019. №1, P. 35-44. DOI: https://doi.org/10.33070/etars.1.2019.03.

Published

2023-10-31

Issue

Section

Ecology, chemical technology, biotechnology, bioengineering