APPLICATION OF ROBUST ALGORITHMS IN THE PROBLEM OF DETECTION OF MOVING TARGETS ON THE BACKGROUND OF NON-GAUSSIAN CLUTTER

Authors

  • Ihor Prokopenko National aviation University, Kiev, Ukraine
  • Anastasiia Dmytruk National aviation University, Kiev, Ukraine
  • Kostiantyn Prokopenko National aviation University, Kiev, Ukraine

DOI:

https://doi.org/10.18372/2310-5461.57.17445

Keywords:

robust algorithm, autoregressive process, clutter, moving target indication

Abstract

Radar detection of signals containing useful information about surveillance objects is a complex and multifunctional process that combines the solution of various problems, one of which is the detection of moving targets against the background of passive interference. Its solution is based on a fundamental idea based on the application of the Doppler effect, according to which, methods of selecting moving targets were developed, which consist in changing the frequency of the signal reflected from the moving object. Traditional sweep-to-sweep subtraction algorithm of passive interference of MTI systems, are effective when the interference is stationary, but have disadvantages caused by interference with a complex frequency spectrum. As a result, to improve the efficiency of radar detection systems, adaptive algorithms were proposed and investigated, and their advantages were shown. However, the need for further processing and improvement of existing systems and methods remains relevant and is caused by many aspects, one of which is the fact that radar detection systems are forced to function in conditions of interference of various natures, which cannot always be described by a Gaussian model.

Thus, the paper focuses on the problem of detecting radar signals reflected from moving targets against the background of obstacles described by a non-Gaussian distribution, and also investigates ensuring the stability of the detection algorithm. The random occurrence of disturbances in the observation process allows for their mathematical representation to use an autoregression model generated by a disturbance described by the Laplace model. As a result, a locally optimal decision rule is synthesized for detecting a signal of a known form against the background of an autoregressive disturbance, which consists in finding the maximum following the signal parameter and the vector of the disturbance parameters of the obtained likelihood ratio, which is the ratio of the hypotheses put forward concerning the obtained sample. The robustness of the detection algorithm is ensured by estimating the unknown parameters of the noise process using an empirical Bayesian approach. In the course of work, the performance of the synthesized algorithm under the influence of non-Gaussian interference, which is described by the K-distribution model, was also investigated. To understand the effectiveness of the proposed detection algorithm, statistical modeling is performed. The simulation results confirm the effectiveness of the synthesized robust algorithm over the non-robust one, the effectiveness of which is manifested in the presence of impulse interference with an increase in the probability of their occurrence, accordingly, it is more resistant to the occurrence of chaotic impulse interference, while the non-robust algorithm gives significant errors, which leads to the deterioration of the detection of the useful signal.

Author Biographies

Ihor Prokopenko, National aviation University, Kiev, Ukraine

Doctor of technical Sciences, Professor, professor of the Department of Telecommunications and Radioelectronic Systems

Anastasiia Dmytruk, National aviation University, Kiev, Ukraine

Postgraduate student of Technical Sciences, Department of Telecommunications and Radioelectronic Systems

Kostiantyn Prokopenko, National aviation University, Kiev, Ukraine

Candidate of technical sciences, associate professor Department of Computer Information Technologies

References

Skolnik M.I. (1990). Radar Handbook (3rd ed). Boston: McGraw-Hill.

Bakulev, P.A., Stepin, V.M. (1986). Methods and Devices for Moving Target Indication. Radio i Svyaz’.

Prokopenko I.G., Omelchuk I.P., and Chyrka Y.D. (2012) "RADAR Signal Parameters Estimation in the MTD Tasks", Intl Journal of Electronics and Telecommunications, Vol. 58, No. 2, pp. 159–164. doi: 10.2478/v10177-012-0023-5.

Prokopenko I.G., Dmytruk A.Yu. (2021). "Implementation of Adaptive Algorithms in the Task of MTDI Filtration," 2021 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics, pp. 226-231. doi: 10.1109/UkrMiCo52950.2021.9716711

Prokopenko I.G., Yanovsky F.J., Ligthart L.P. (2004). "Adaptive algorithms for weather radar", Conference Proceedings - 1st European Radar Conference, EuRAD 2004, pp. 329–332.

Корнильєв Е.О., Прокопенко І.Г., Чуприн В.М. (1989). Стійкі алгоритми в автоматизованих системах обробки інформації. Техніка.

Prokopenko I.G. (2017). "Robust methods and algorithms of signal processing," IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS) 2017, pp. 71-74. doi: 10.1109/MRRS.2017.8075029.

Launer R.L., Wilkinson G.N. (1979). Robustness in Statistics. Academic Press.

Kelly E.J. (1986). "An Adaptive Detection Algorithm", IEEE Transactions on Aerospace and Electronic Systems, vol. AES-22, no. 2, pp. 115-127. doi: 10.1109/TAES.1986.310745.

Попов Д.І. (2017). "Адаптивне виявлення сигналів на фоні пасивних завад", Вісник НТУУ "КПІ". Радіотехніка, радіо апаратобудування, Вип. 70, С.5–10.

Zeyu Wang, Jun Liu, Hongmeng Chen, Wei Yang. (2022) “Adaptive robust radar target detector based on Gradient test”, Remote Sensing, vol. 14, no. 14: 5236. doi: 10.3390/rs14205236

Леховицький Д.І., Рябуха В.П., Жуга Г.О. (2011). "СРЦ в імпульсних РЛС: 1. Фізичний зміст і екстремальні властивості операцій оптимальної міжперіодної обробки гаусівських сигналів на тлі гаусівських пасивних завад", Прикладна радіоелектроніка, Том 10. № 4, С. 463-478.

Леховицький Д.І., Рябуха В.П., Жуга Г.О., Рачков Д.С. Семеняка А.В. (2011). "СРЦ в імпульсних РЛС: 5. Адаптивні системи міжперіодної обробки гаусових сигналів на тлі гаусових пасивних завад", Прикладна радіоелектроніка, Том 10. № 4, С. 508-525.

Xue J., Xu S., Liu J., Pan M. and Fang J. (2022). "Bayesian Detection for Radar Targets in Compound-Gaussian Sea Clutter", IEEE Geoscience and Remote Sensing Letters, vol. 19, art no. 4020805, pp. 1-5. doi: 10.1109/LGRS.2022.3140727.

Doyuran U.C., Tanik.Y. (2008) "detection of multiple targets in non-Gaussian clutter", IEEE Radar Conference, (Rome, Italy, 2008), pp. 1-5. doi: 10.1109/RADAR.2008.4721041.

Леховицький Д.І., Кирилов І.Г. (2008). "Моделювання пасивних завад імпульсним РЛС на основі процесів авторегресії довільного порядку.", Системи обробки інформації, № 3(70), С. 90-101.

Kotz S., Kozubowski T., Podgorski K. (2001). The Laplace Distribution and Generalizations.. doi:10.1007/978-1-4612-0173-1_5.

The Concise Encyclopedia of Statistics, New York: Springer, 2008, pp. 299-302, doi.org/10.1007/978-0-387-32833-1_225

Iskander D., Zoubir A., Boashash B. (1999). "Method for estimating the parameters of the K distribution.", Signal Processing, IEEE Transactions, pp. 1147 – 1151. doi: 10.1109/78.752614

Ward K.D., Tough R.J.A. and Shepherd P.W., "Modelling sea clutter: correlation, resolution and non-Gaussian statistics", IEEE Conference Publication 449, Radar 97, pp. 95–99.

Published

2023-04-29

Issue

Section

Electronics, telecommunications and radio engineering