КЛЮЧОВІ НАПРЯМКИ ДОСЛІДЖЕНЬ СТІЛЬНИКОВИХ МЕРЕЖ НА ШЛЯХУ ДО 6G (ОГЛЯД)

Автор(и)

  • Роман Одарченко Національний авіаційний університет
  • Тетяна Дика Національний авіаційний університет
  • Олена Жарова Національний авіаційний університет
  • Михайло Одарченко Національний авіаційний університет
  • Віталій Жога Національний авіаційний університет
  • Олександр Слободян Національний авіаційний університет

DOI:

https://doi.org/10.18372/2310-5461.55.16904

Ключові слова:

5G, 6G, мережа, технології, 3GPP

Анотація

Сучасні стільникові мережі зв’язку розвиваються дуже швидкими темпами. Поява технології мобільного зв’язку 5G вже демонструє ознаки того, що стає основним фактором підвищення продуктивності та, як очікується, стане ключовим фактором для довгоочікуваних, високоінтегрованих та автономних додатків у багатьох секторах. Ця нова хвиля технологій прискорить цифровізацію економіки та суспільства. По всьому світу розпочалось повноцінне розгортання комерційних мереж п’ятого покоління. В цих мережах досягаються дуже високі показники якості обслуговування абонентів. Проте, із розвитком стільникових технологій та і взагалі цифрового суспільства виникають принципово нові випадки використання, які вимагатимуть ще більш покращених показників ефективності функціонування стільникових мереж зв’язку. У зв’язку із цим, прогрес не стоїть на місці і організацією 3GPP було розроблено план по розвитку стільникових мереж, покращенню їх характеристик та введенню в експлуатацію. Наступним поколінням мобільних мереж зв’язку стане 6G. Дослідження на шляху до 6G заплановані на дану декаду і відповідно вже відбуваються, а повноцінний запуск у комерційну експлуатацію заплановано на 2030 роки. Саме тому, у даному дослідженні розглядаються мобільні технології на шляху до 6G. Зокрема, у роботі представлено високорівневе бачення екосистеми 6G, проаналізовані потенційні вимоги, нові виникаючі виклики. Таким чином, основна мета даної роботи полягає у проведенні критичного аналізу останніх удосконалень, зроблених у мобільній системі 5G, визначення їх недоліків та відповідно напрямків покращення. Також було детально проаналізовано еволюцію і розширені функції 5G, щоб передбачити критичні вимоги до 6G і одночасно підкреслити їх нові можливості. Було запро[1]поновано кілька потенційних сценаріїв застосувань 6G, розглянуті їхні переваги, основні концепції. На базі цього, були сформовані основні напрямки досліджень з метою удосконалення стільникових мереж на шляху до 6G. І очевидним є те, що ці ключові напрямки удосконалень стільникових мереж стануть основою побудови цифрового безпроводового світу майбутньому.

Біографії авторів

Роман Одарченко, Національний авіаційний університет

Доктор технічних наук, професор, завідувач кафедри телекомунікаційних та радіоелектронних систем Факультету аеронавігації, електроніки та телекомунікацій

Тетяна Дика, Національний авіаційний університет

Лаборант, студент кафедри телекомунікаційних та радіоелектронних систем факультету аеронавігації, електроніки та телекомунікацій

Олена Жарова, Національний авіаційний університет

Кандидат педагогічних наук, доцент кафедри телекомунікаційних та радіоелектронних систем

Михайло Одарченко, Національний авіаційний університет

Кандидат технічних наук кафедри телекомунікаційних та радіоелектронних систем факультету аеронавігації, електроніки та телекомунікацій

Віталій Жога, Національний авіаційний університет

Кандидат технічних наук, докторант кафедри телекомунікаційних та радіоелектронних систем факультету аеронавігації, електроніки та телекомунікацій

Олександр Слободян, Національний авіаційний університет

Кандидат технічних наук

Посилання

D. Mi, R. Odarchenko et al., "Demonstrating Im mersive Media Delivery on 5G Broadcast and Mul ticast Testing Networks," in IEEE Transactions on Broadcasting, doi: 10.1109/TBC.2020.2977546.

M. Liyanage, A. Gurtov, and M. Ylianttila, Soft ware Defined Mobile Networks (SDMN): Beyond LTE Network Architecture. Hoboken, NJ, USA: Wiley, 2015. doi.org/10.1002/9781118900253

S. Wijethilaka and M. Liyanage, “Realizing Internet of Things with network slicing: Opportunities and challenges,” in Proc. IEEE 18th Annu. Consum. Commun. Netw. Conf. (CCNC), 2021, pp. 1–6 doi.org/10.1109/ CCNC49032.2021.9369637.

Y. Siriwardhana, C. De Alwis, G. Gür, M. Yliant tila, and M. Liyanage, “The fight against the COVID-19 pandemic with 5G technologies,” IEEE Eng. Manag. Rev., vol. 48, no. 3, pp. 72–84, Sep. 2020. doi.org/10.1109/EMR.2020.3017451.

W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technolo gies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–142, May/Jun. 2019. doi.org/10.1109/ MNET.001.1900287.

F. Fang, Y. Xu, Q.-V. Pham, and Z. Ding, “Energy-efficient design of IRS-NOMA net works,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14088–14092, Nov. 2020. doi.org/10.1109/ TVT.2020.3024005

Y. Lu and X. Zheng, “6G: A survey on technolo gies, scenarios, challenges, and the related issues,” J. Ind. Inf. Integr., vol. 19, Art. no. 100158, Sep. 2020. doi.org/10.1016/j.jii.2020.100158.

Iavich M., Gnatyuk S., Odarchenko R., Bocu R., Simonov S. (2021) The Novel System of Attacks Detection in 5G. In: Barolli L., Woungang I., Enokido T. (eds) Advanced Information Network ing and Applications. AINA 2021. Lecture Notes in Networks and Systems, vol 226. Springer, Cham. https://doi.org/ 10.1007/978-3-030-75075- 6_47 (Scopus)

A. Zappone, M. Di Renzo and M. Debbah, “Wire less Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?,” IEEE Transac tions on Communications, vol. 67, no. 10, pp. 7331–7376, Oct. 2019. doi.org/10.1109/ TCOMM.2019.2924010.

O. Simeone, “A Very Brief Introduction to Ma chine Learning with Applications to Communica tion Systems,” IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 648-664, Dec. 2018. doi.org/10.1109/ TCCN.2018.2881442

M. Chen, U. Challita, W. Saad, C. Yin and M. Debbah, “Artificial Neural Networks-Based Ma chine Learning for Wireless Networks: A Tuto rial,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3039-3071, Fourth-quarter 2019. doi.org/10.1109/ COMST.2019.2926625

3GPP TR 37.817, “Study on enhancement for data collection for NR and EN-DC,” V0.1.0, January 2021.

RP-213468, “Summary for RAN Rel-18 package,” 3GPP RAN#94-e, December 2021. Available at http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR _94e/Docs/R P-213469.zip. Accessed on January 2, 202], [RP-212708, “New SID on AI/ML for NR Air Interface,” 3GPP TSG RAN#94e, December 2021.

Lane, K. E., & Levy, S. J. (2019). Marketing in the digital age: A moveable feast of information. In A. Rindfleisch & A. J. Malter (Eds.), Review of mar keting research (Vol. 16). Bingley: Emerald Publishing. doi.org/10.1108/S1548-643520190000016004.

Hofacker, C. (2019). Notes on the growing impor tance of software as a driver of value exchange. In A. Rindfleisch & A. J. Malter (Eds.), Review of mar keting research (Vol. 16, 8596). Bingley: Emerald Pub lishing. doi.org/10.1108/S1548-643520190000016007.

Wang, M.; Zhu, T.; Zhang, T.; Zhang, J.; Yu, S.; Zhou, W. Security and privacy in 6G networks: New areas and new challenges. Digit. Commun. Netw. 2020, 6, 281–291. doi.org/10.1016/ j.dcan.2020.07.003

M. Katz, M. Matinmikko-Blue, M. Latva-Aho, 6Genesis fagship program: building the bridges towards 6G-enabled wireless smart society and ecosystem, in Proceedings of IEEE 10th Latin American Conference on Communications (LATINCOM) (Guadalajara, Mexico, 2018). doi.org/10.1109/LATINCOM.2018.8613209.

E. Calvanese Strinati, S. Barbarossa, J.L. Gon zalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, C. Dehos, 6G: the next frontier: from holographic messaging to artifcial intelligence using subtera hertz and visible light communication. IEEE Veh. Technol. Mag. 14(3), 42–50 (2019). doi.org/ 10.1109/MVT.2019.2921162.

B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, J. Wang, 6G technologies: key drivers, core require ments, system architec-tures, and enabling tech nologies. IEEE Veh. Technol. Mag. 14(3), 18–27 (2019) W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: applications, trends, tech nologies, and open research problems. IEEE Netw. 34(3), 134–142 (2020). doi.org/10.1109/ MVT.2019.2921398.

S. Dang, O. Amin, B. Shihada, M.-S. Alouini, What should 6G be? Nat. Electron. 3(1), 20–29 (2020). doi.org/10.1038/s41928-019-0355-6.

N. H. Mahmood, H. Alves, O.L.A. López, M. Shehab, D.P.M. Osorio, M. Latva-aho, Six key enablers for machine type communication in 6G, in Proceedings 2nd 6G Wireless Summit (Levi, Finland, 2020). doi.org/10.1109/ 6GSUMMIT49458.2020.9083794.

Nawaz, F.; Ibrahim, J.; Awais, M.; Junaid, M.; Kousar, S.; Parveen, T. A review of vision and challenges of 6G technology. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 643–649. doi.org/10.14569/ IJACSA. 2020.0110281.

De Alwis, C.; Kalla, A.; Pham, Q.-V.; Kumar, P.; Dev, K.; Hwang, W.-J.; Liyanage, M. Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open J. Commun. Soc. 2021, 2, 836–886. doi.org/10.1109/ OJCOMS.2021.3071496.

Chen, S.; Liang, Y.-C.; Sun, S.; Kang, S.; Cheng, W.; Peng, M. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 2020, 27, 218–228. doi.org/10.1109/MWC.001.1900333.

Alsharif, M.H.; Kelechi, A.H.; Albreem, M.A.; Chaudhry, S.A.; Zia, M.S.; Kim, S. Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions. Symmetry 2020, 12, 676. doi.org/10.3390/sym12040676.

S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nat. Electron., vol. 3, no. 1, pp. 20–29, 2020. doi.org/10.1038/s41928-019-0355-6.

M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions,” IEEE Open J. Commun. Soc., vol. 1, pp. 957–975, 2020. doi.org/10.1109/ OJCOMS. 2020.3010270. [28] S. Chen, Y.-C. Liang, S. Sun, S. Kang, W. Cheng, and M. Peng, “Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed,” IEEE Wireless Commun., vol. 27, no. 2, pp. 218–228, Apr. 2020. doi.org/10.1109/MWC.001.1900333.

Z. Zhang et al., “6G wireless networks: Vision, re quirements, architecture, and key technologies” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, Sep. 2019. doi.org/10.1109/MVT.2019.2921208.

F. Tariq, M. R. Khandaker, K.-K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun., vol. 27, no. 4, pp. 118–125, Aug. 2020. doi.org/10.1109/MWC.001. 1900488.

T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang, “A survey on green 6G network: Architecture and technologies” IEEE Access, vol. 7, pp. 175758– 175768, 2019. doi.org/10.1109/ACCESS. 2019.2957648.

L. U. Khan, I. Yaqoob, M. Imran, Z. Han, and C. S. Hong, “6G wireless systems: A vision, architec tural elements, and future directions,” IEEE Access, vol. 8, pp. 147029–147044, 2020. doi.org/10.1109/ ACCESS. 2020.3015289.

C. De Lima et al., “Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges” IEEE Access, vol. 9, pp. 26902–26925, 2021. doi.org/ 10.1109/ACCESS.2021.3053486.

K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The roadmap to 6G: AI empowered wireless networks” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019. doi.org/10.1109/ MCOM.2019. 1900271.

M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G networks: Use cases and technologies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, Mar. 2020. doi.org/10.1109/MCOM. 001.1900411.

I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future of wireless communications systems,” IEEE Access, vol. 8, pp. 133995–134030, 2020. doi.org/10.1109/ACCESS.2020.3010896.

S. Chen, Y.-C. Liang, S. Sun, S. Kang, W. Cheng, and M. Peng, “Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed,” IEEE Wireless Commun., vol. 27, no. 2, pp. 218–228, Apr. 2020. doi.org/10.1109/MWC.001. 1900333.

P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and potential techniques,” IEEE Netw., vol. 33, no. 4, pp. 70–75, Jul./Aug. 2019. doi.org/10.1109/MNET.2019.1800418.

B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, and J. Wang, “6G technologies: Key drivers, core requirements, system architectures, and enabling technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 18–27, Sep. 2019. doi.org/10.1109/MVT. 2019.2921398.

Z. Zhang et al., “6G wireless networks: Vision, re quirements, architecture, and key technologies” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, Sep. 2019. doi.org/10.1109/MVT.2019.2921208.

A. Dogra, R. K. Jha, and S. Jain, “A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies,” IEEE Access, early ac cess, Oct. 15, 2020, doi: 10.1109/ACCESS. 2020.3031234. doi.org/10.1109/ ACCESS.2020.3031234.

Hess, T., Matt, C., Benlian, A., & Wiesböck, F. (2016). Options for formulating a digital transforma tion strategy. MIS Quarterly Executive, 15(2).

Baiyere, A., Salmela, H., & Tapanainen, T. (2020). Digital transformation and the new logics of business process management. European Journal of Information Systems, 29(3), 238–259. doi.org/10.1080/0960085X. 2020.1718007.

Bilgeri, D., Wortmann, F., & Fleisch, E. (2017). How digital transformation affects large manufacturing companies’ organization.

Vey, K., Fandel-Meyer, T., Zipp, J. S., & Schneider, C. (2017). Learning & development in times of digital transformation: Facilitating a culture of change and innovation. International Journal of Advanced Corporate Learning, 10(1). doi.org/10.3991/ ijac.v10i1.6334.

Al-Azzeh, J. S., Odarchenko, R., Abakumova, A. et al. Method for QOE monitoring and increasing in cel lular networks based on QOE-to-QOS mapping using spline approximation. J Wireless Com Network 2022, 43 (2022). https://doi.org/10.1186/s13638-022- 02125-3.

Barikhina, M. (2018). 5 digital workplace technolo gies to transform business. Beekeeper Blog. Re trieved May 14, 2019, from https://blog.beekeeper.io/ top-5-emerging-digital-workplace-technologies transform-business/

David, K.; Berndt, H. 6G vision and requirements: Is there any need for beyond 5G? IEEE Veh. Technol. Mag. 2018. doi.org/10.1109/MVT. 2018.2848498.

Tariq, F.; Khandaker, M.; Wong, K. K.; Imran, M.; Bennis, M.; Debbah, M. A speculative study on 6G. arXiv 2019. doi.org/10.1109/MWC.001.1900488.

Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless net works: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019. doi.org/ 10.1109/MVT.2019.2921208.

Xiao, M.; Mumtaz, S.; Huang, Y.; Dai, L.; Li, Y.; Matthaiou, M.; Karagiannidis, G.K.; Björnson, E.; Yang, K.; Chih-Lin, I.; et al. Millimeter wave com munications for future mobile networks. IEEE J. Sel. Areas Commun. 2017. doi.org/10.1109/JSAC.2017. 2698698.

Samdanis, K.; Taleb, T. The road beyond 5G: A vi sion and insight of the key technologies. IEEE Netw. 2020, 34, 135–141. doi.org/10.1109/MNET.001. 1900228.

Fang, L.; Zhao, B.; Li, Y.; Liu, Z.; Ge, C.; Meng, W. Countermeasure based on smart contracts and AI against DoS/DDoS attack in 5G circumstances. IEEE Netw. 2020, 34, 54–61. doi.org/10.1109/MNET. 021.1900614.

Saad, W.; Bennis, M.; Chen, M. A vision of 6G wire less systems: Applications, trends, technologies, and open research problems. IEEE Netw. 2019, 34, 134–142. doi.org/10.1109/MNET.001.1900287.

Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065– 1082. doi.org/10.1109/JSAC.2014.2328098

Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G Wireless communications: Vision and potential techniques. IEEE Netw. 2019, 33, 70–75. doi.org/10.1109/ MNET.2019.1800418.

Camps-Mur D.; Gutierrez, J.; Grass, E.; Tzanakaki, A.; Flegkas, P.; Choumas, K.; Giatsios, D.; Beldachi, A.F.; Diallo, T.; Zou, J.; et al. 5G-xHaul: A Novel Wireless-Optical SDN Transport Network to Support Joint 5G Backhaul and Fronthaul Services. IEEE Commun. Mag. 2019, 57, 99–105. doi.org/10.1109/ MCOM.2019.1800836.

Wu, W.; Zhou, C.; Li, M.; Wu, H.; Zhou, H.; Zhang, N.; Shen, X.; Zhuang, W. AI-Native Network Slicing for 6G Networks. IEEE Wirel. Commun. 2021, 29, 96–103. doi.org/10.1109/MWC.001.2100338.

J. Lee, B. Bagheri, and H.-A. Kao, “A Cyber Physical Systems architecture for Industry 4.0-based manufacturing systems” Manufacturing Letters, vol. 3, pp. 18 – 23, Jan. 2015. doi.org/10.1016/ j.mfglet. 2014.12.001.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27, Mar. 2017. doi.org/10.1109/MIE.2017. 2649104.

K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The roadmap to 6G: AI empowered wireless networks” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019. doi.org/10.1109/MCOM.2019. 1900271.

Y. Lu and X. Zheng, “6G: A survey on technologies, scenarios, challenges, and the related issues,” J. Ind. Inf. Integr., vol. 19, Art. no. 100158, Sep. 2020. doi.org/10.1016/j.jii.2020.100158.

Latva-aho, M. & Leppänen, K. (Eds). Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence. 6G Flagship White Paper, University of Oulu, September 2019.

G. Berardinelli, N. H. Mahmood, I. Rodriguez, and P. Mogensen, “Beyond 5G wireless IRT for industry 4.0: Design principles and spectrum aspects” in IEEE Globecomm Workshops, Dec. 2018. doi.org/10.1109/ GLOCOMW.2018.8644245.

E. C. Strinati et al., “6G: The next frontier”, Jan. 2019.

K. David and H. Berndt, “6G vision and require ments: Is there any need for beyond 5G?” IEEE Ve hicular Technology Magazine, vol. 13, no. 3, pp. 72– 80, Sep. 2018. doi.org/10.1109/MVT.2018.2848498.

S. Mumtaz et al., “Terahertz communication for vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 5617–5625, July 2017. doi.org/10.1109/TVT.2017.2712878.

C. de Alwis, A. Kalla, Q. V. Pham, P. Kumar, K. Dev, W. J. Hwang, and M. Liyanage, “Survey on 6G Frontiers: Trends, Applications, Requirements, Tech nologies and Future Research,” IEEE Open Journal of the Communications Society, pp. 1–1, 2021. doi.org/ 10.1109/OJCOMS.2021.3071496.

G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6G: Opening new horizons for integration of comfort, security and intelligence,” IEEE Wireless Communications, 2020. doi.org/10.36227/techrxiv. 11634669.v1.

Yazar, A.; Dogan-Tusha, S.; Arslan, H. 6G vision: An ultra-flexible perspective, ITU. J. Future Evol. Tech nol. 2020, 1, 121–140. doi.org/10.52953/IKVY9186.

Alwis, C.; Kalla, A.; Pham, Q.-V.; Kumar, P.; Dev, K.; Hwang, W.-J.; Liyanage, M. Survey on 6G Fron tiers: Trends, Applications, Requirements, Technologies and Future Research. IEEE Open J. Commun. Soc. 2021, 2, 836–886. doi.org/10.1109/OJCOMS.2021. 3071496.

Ray, P.; Kumar, N.; Guizani, M. A Vision on 6G Enabled NIB: Requirements, Technologies, Deploy ments, and Prospects. IEEE Wirel. Commun. 2021, 28, 120–127. doi.org/10.1109/MWC.001.2000384.

Yang, H.; Alphones, A.; Xiong, Z.; Niyato, D.; Zhao, J.; Wu, K. Artificial-Intelligence-Enabled Intelligent 6G Networks. IEEE Netw. 2020, 34, 272–280.], [Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening new horizons for integration of com fort, security, and intelligence. IEEE Wirel. Com mun. 2020, 27, 126–132. doi.org/10.1109/MNET. 011.2000195. [74] Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A Survey on Green 6G Network: Archi tecture and Technologies. IEEE Access 2019, 7, 175758–175768. doi.org/10.1109/ACCESS. 2019. 2957648.

Rupprecht, D.; Dabrowski, A.; Holz, T.; Weippl, E.; Popper, C. On security research towards future mobile network generations. IEEE Commun. Surv. Tutor. 2018, 20, 2518–2542. doi.org/10.1109/ COMST.2018.2820728.

Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6g Networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61. doi.org/10.1109/MCOM.001.1900411.

Cambria, E. Affective computing and sentiment analysis. IEEE Intell. Syst. 2016, 31, 102–107. doi.org/10.1109/MIS.2016.31.

Singh, R.P.; Javaid, M.; Kataria, R.; Tyagi, M.; Haleem, A.; Suman, R. Significant applications of virtual reality for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 661–664. doi.org/10.1016/j.dsx.2020.05.011.

Swiatek, P. R.; Weiner, J. A.; Johnson, D. J.; Louie, P. K.; McCarthy, M. H.; Harada, G. K.; Germscheid, N.; Cheung, J. P.; Neva, M. H.; El-Sharkawi, M.: et al. COVID-19 and the rise of virtual medicine in spine surgery: A worldwide study. Eur. Spine J. 2021, 1–10. doi.org/10.1007/ s00586-020-06714-y.

Kimura, S.; Aburakawa, Y.; Watanabe, F.; Torashima, S.; Igarashi, S.; Nakamura, T.; Yama guchi, M. Holographic Video Communication Sys tem Realizing Virtual Image Projection and Frontal Image Capture. ITE Trans. Media Technol. Appl. 2021, 9, 105–112. doi.org/10.3169/mta.9.105.

Redshaw, T. The Significance of 5G for Special Operations of the Future; Strategic Latency Unleashed: Livermore, CA, USA, 2021; p. 293.

3GPP TSG SA WG3 Security – S3#30 S3-030534 Over-The-Air (OTA) technology. Available at ftp://www.3gpp.org/tsg_sa/WG3_Security/TSGS3 _30_Povoa/Docs/PDF/S3-030534.pdf.

Rich Communication Services (RCS). From https://www.gsma.com/futurenetworks/rcs/. [84] RCC.71 – RCS Universal Profile Service Defini tion. Available at https://www.gsma.com/news room/wp-content/uploads//RCC.71-v2.5-6.pd

##submission.downloads##

Опубліковано

2022-11-01

Номер

Розділ

Електроніка, телекомунікації та радіотехніка