MONITORING, MAPPING AND INVENTORY OF LANDFILLS OF KYIV CITY AND KYIV RE-GION CONTAINING WASTE OF TRANSPORT INFRASTRUCTURE
DOI:
https://doi.org/10.18372/2310-5461.51.15995Keywords:
landfill, waste, transport, cartography, OpenStreetMapAbstract
The high concentration of transport infrastructure in Kyiv city and Kyiv region creates the possibility of man-made emergencies. Therefore, there is an urgent issue of monitoring and inventory of landfills of both man-made waste, in general, and transport infrastructure waste, which will allow to assess the degree of danger of such facilities, their impact on the ecology of the region and to offer recommendations for optimal disposal of such landfills in the future and for improving the waste management in transport industry.
The purpose of this work is to create a register and to map landfills in Kyiv city and Kyiv region (both official and unofficial), which contain or may contain transport infrastructure waste. There is currently no such register, so this work is "pioneering" and will be useful for the analysis and further monitoring of such facilities.
First of all, it was taken into account that such waste may be contained in the municipal solid waste. Therefore, information on official landfills and disposal of such waste exported from Kyiv was analyzed. The next class of considered objects is objects of burial of transport equipment. Finally, an important class of objects is the actual territory of transport infrastructure objects (aviation, railway, automobile). The authors considered a significant number of such facilities within the city of Kyiv, as well as the territory of Boryspil International Airport.
According to the interpretation of high-resolution satellite images, a register of landfills in Kyiv city and Kyiv region that contain or may contain transport infrastructure waste has been created. Maps of the territories of these landfills were built using OpenStreetMap data, which were supplemented by the authors. The area and other characteristics of landfills are estimated. Two unofficial landfills with an area of 7.9 and 2.8 hectares were identified.
References
Вишня М.М. Техногенні небезпеки Київської області: інвентаризація та картографування. Українсь-кий географічний журнал. 2016. № 2. C. 57-63. https://doi.org/10.15407/ugz2016.02.057
Новохацька Н.А., Трофимчук О.М. Технологія інвентаризації місць видалення відходів методами дистанційного зондування Землі. Екологічна безпека та природокористування. 2014. Вип. 14. С. 31-40.
Сміттєві звалища. Департамент житлово-комунальної інфраструктури Київської міської державної адміністрації: офіційний запит. 2016. https://dostup.pravda.com.ua/request/smittievi_zvalishcha?nocache=incoming-18918
Сміттєві звалища в Києві та області. Інтерактивна карта. 2015. https://www.google.com/maps/d/viewer?mid=1tNSA4vJctKN3qPcGEioLW-6tpqk
Alexakis, D. D., Sarris, A. Integrated GIS and remote sensing analysis for landfill sitting in Western Crete, Greece. Environmental Earth Sciences. 2013. Vol. 72(2). P. 467–482. https://doi.org/10.1007/s12665-013-2966-y
Biotto, G., Silvestri, S., Gobbo, L., Furlan, E., Valenti, S., Rosselli, R. GIS, multi‐criteria and multi‐factor spatial analysis for the probability assessment of the existence of illegal landfills. International Journal of Geographical Information Science. 2009. Vol. 23(10). P. 1233–1244. https://doi.org/10.1080/13658810802112128
Iacoboaea, C., Petrescu, F. Landfill monitoring using remote sensing: a case study of Glina, Romania. Waste Management & Research. 2013. Vol. 31(10). P. 1075–1080. https://doi.org/10.1177/0734242x13487585
Rahmat, Z.G., Niri, M.V., Alavi, N., Goudarzi, G., Babaei, A.A., Baboli, Z. and Hosseinzadeh, M. Landfill site selection using GIS and AHP: a case study: Behbahan, Iran. KSCE Journal of Civil Engineering. 2017. Vol. 21(1). P. 111-118. https://doi.org/10.1007/s12205-016-0296-9
Silvestri, S., Omri, M. A method for the remote sensing identification of uncontrolled landfills: formulation and validation. International Journal of Remote Sensing. 2008. Vol. 29(4). P. 975-989. https://doi.org/10.1080/01431160701311317
Maxar Technologies: Imagery Basemaps. 2020. https://www.maxar.com/products/imagery-basemaps
JOSM. 2021. https://josm.openstreetmap.de/
Zinn, N. and Hydrometronics, L.L.C. Web Mercator: Non-Conformal, Non-Mercator. Hydrometronics LLC. 2010. http://www.hydrometronics.com/downloads/Web Mercator - Non-Conformal, Non-Mercator (notes).pdf
EPSG:3857, WGS 84 / Pseudo-Mercator – Spherical Mercator, Google Maps, OpenStreetMap, Bing, ArcGIS, ESRI. 2015. https://epsg.io/3857
Haklay, M. and Weber, P. OpenStreetMap: User-generated street maps. IEEE Pervasive computing. 2008. 7(4). P.12-18. https://doi.org/10.1109/MPRV.2008.80
OpenStreetMap. 2021. https://www.openstreetmap.org/
QGIS: A Free and Open Source Geographic Information System. 2021. https://qgis.org/
Публічна кадастрова карта України. 2019. https://map.land.gov.ua/