Waveguide polarizer with three irises for antennas of satellite television systems

Authors

  • Андрій Васильович Булашенко National Technical University of Ukraine,"Igor Sikorsky Kyiv Polytechnic Institute»
  • Степан Іванович Пільтяй National Technical University of Ukraine,"Igor Sikorsky Kyiv Polytechnic Institute»
  • Ганна Сергіївна Кушнір National Technical University of Ukraine,"Igor Sikorsky Kyiv Polytechnic Institute»
  • Олександр Васильович Булашенко Ivan Kozhedub Shostka professional college of Sumy State University, Shostka, Sumy region, Ukraine

DOI:

https://doi.org/10.18372/2310-5461.49.15290

Keywords:

polarizer, waveguide, iris, differential phase shift, voltage standing wave ratio, axial ratio, crosspolar dis-crimination

Abstract

Frequency resources of satellite, terrestrial and other communication systems are expensive and limited. Modern telecommunication satellite systems use signals with two orthogonal linear or circular polarizations. Such signals allow the reuse of the same frequency band. In this case, the information capacity of the wireless channel is doubled. Circularly polarized signals reduce fading and destructive signal interference caused by multipath. For multipath propagation of electromagnetic waves, the use of signals with orthogonal circular polarization improves the performance of satellite systems. In antenna systems that use such signals, there is no need for precise angular orientation between the transmitting and receiving antennas. This pattern is used in mobile satellite telecommunication systems, where it is not possible to fix the orientation of one antenna relative to another. The listed features allow using antennas with polarization processing in modern wireless satellite television systems. Thus, an important engineering problem is the development and optimization of the characteristics of new waveguide polarizers for satellite antenna feeds. The results of the development and optimization of a new waveguide polarizer with irises for satellite television systems are presented in the article. The design of the developed polarizer consists of a square waveguide with three irises. Optimization of such a polarizer in the Ku-frequency range from 10.7 GHz to 12.8 GHz has been performed. The developed waveguide polarizer provides a differential phase shift of 90° ± 4.0°, a voltage standing wave ratio less than 2.03, an axial ratio less than 0.61 dB, and the crosspolar discrimination higher than 29.0 dB. Therefore, the created new polarizer based on a square waveguide with three irises ensures effective operation in the entire satellite Ku-band 10.7–12.8 GHz

Author Biographies

Андрій Васильович Булашенко, National Technical University of Ukraine,"Igor Sikorsky Kyiv Polytechnic Institute»

Department of Theoretical Foundations of Radio Engineering

Степан Іванович Пільтяй, National Technical University of Ukraine,"Igor Sikorsky Kyiv Polytechnic Institute»

Candidate of Engineering Sciences, Associate Professor, Department of Theoretical Foundations of Radio Engineering

Ганна Сергіївна Кушнір, National Technical University of Ukraine,"Igor Sikorsky Kyiv Polytechnic Institute»

Department of Radio Receiving and Signal Processing

Олександр Васильович Булашенко, Ivan Kozhedub Shostka professional college of Sumy State University, Shostka, Sumy region, Ukraine

student, Electromechanical Department

References

Stutzman W.L. Polarization in Electromagnetic Systems. Norwood: Artech House, 2018, 352 p.

Булашенко А.В. Оцінка зв’язності D2D комунікацій у мережах 5G. Вісник НТУУ «КПІ» Серія Радіотехніка, Радіоапаратобудування. 2020. V. 81. Р. 21-29. Doi.org/10.20535/RADAP.2020.81.21-29.

Булашенко А.В. Розподіл ресурсів для пристроїв малої потужності М2М в мережах 5G. Наукові вісті КПІ. 2020. V. 3. P. 7-13. Doi.org/10.20535/kpi-sn.2020.3.203863.

Булашенко А.В. Система вивантаження даних за технологією D2D у неліцензованому діапазоні частот у складі системи зв’язку 5G. Технічна інженерія. 2020. V. 86. No. 2. P. 103-107. Doi.org/10.26642/ten-2020-2(86)-103-104.

Гладун В. В., Булашенко А.В. Забезпечення високої якості мереж 5G за допомогою технології D2D, Міжнародна науково-технічна конференція «Радіотехнічні поля, сигнали апарати та системи». Україна. Київ 2019. Р. 57–59.

Булашенко А.В., Забегалов І.В. Конструкція портативного цифрового мегомметра та вимірювача струму витоку, Вісник Вінницького політехнічного інституту. 2020. V. 3. P. 37-42. Doi.org/10.31649/1997-9266-2020-150-3-37-42.

Chieh J.G., Yeo E., Farkouh R., Castro A., Kerber M., Olsen R.B., Randall B.O., Merulla E.J., Sharma S.K. Development of flat panel active phase array antennas using 5G silicon RFICs at Ku- and Ka-band. IEEE Access. 2020. vol. 8. Pp. 192669–192681. Doi.org/10.1109/ACCESS.2020.3032841(eng).

Al-Amoodi K., Mirzavand R., Honari M.M., Melzer J., Elliott D.G., Mousavi P. Compact substrate integrated waveguide notched-septum polarizer for 5G mobile devices. IEEE Antennas and Wireless Propagation Letters. 2020. Early Accesss. Pp. 192669–192681. Doi.org/10.1109/LAWP.2020.3038404(eng).

Gao S., Luo Q., Zhu F. Circularly polarized Antennas Theory and Design. Chichester: John Wiley and Sons, 2014, 322p.

Pozar D.M. Microwave Engineering. Antennas: From Theory to Practice. Hoboken, New Jersey: John Wiley and Sons, 2012., 732 p.

Mrnka M., Pavlovic M., Raida Z. Antenna range illuminator based on a septum polarizer and a dual-mode horn. IEEE Antennas and Propagation Magazine. 2016. vol. 58. no. 4. Pp. 82–86. Doi.org/10.1109/MAP.2016.2569444(eng).

Nikolic N., Weily A., Kekic I., Smith S.L., Smart K.W. A septum polarizer with integrated square to circular tapered waveguide transition. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Raio Science Meetings. USA. Boston 2018. Pp. 725-726. Doi.org/ 10.1109/APUSNCURSINRSM.2018.8608909(eng).

Dubrovka F.F., Piltyay S.I., Dubrovka R.R., Lytvyn M.M., Lytvyn S.M. Optimum septum polarizer design for various fractional bandwidths. Radioelectron. Commun. Syst. 2020. vol. 63. no. 1. Pp. 15–23. Doi.org/10.3103/S0735272720010021(eng).

Deutschmann B., A.F. Jacob. Broadband septum polarizer with triangular common port. IEEE Transactions on Microwave Theory and Techniques. 2020. vol. 68. no. 2. Pp. 693-700. Doi.org/10.1109/TMTT.2019.2951138 (eng).

Dubrovka F., Piltyay S., Sushko O., Lytvyn M., Lytvyn M. Compact X-band stepped-thickness septum polarizer. IEEE Ukrainian Microwave Week. Ukraine. Kharkiv 2020. Pp. 135-138. Doi.org/10.1109/UkrMW49653.2020.9252583(eng).

Virone G., Tascone R., Peverinin O.A., Orta R. Optimum iris set concept for waveguide polarizers. IEEE Micro-wave and Wireless Components Letters. 2007. vol. 17. no.3. Pp. 202–204. Doi.org/10.1109/LMWC.2006.890474 (eng).

Dubrovka F., Piltyay S.I. A novel wideband coaxial polarizer. In IEEE International Conference on Antenna Theory and Techniques. Ukraine. Odessa 2013. Pp. 473-474. Doi.org/10.1109/ICATT.2013.6650816(eng).

Kulik D.Yu., Mospan L.P., Perov A.O., Kolmakova N.G. Compact-size polarization rotators on the basis of irises with rectangular slots. Telecom. and Radio Engineering. 2016. vol. 75. no. 1. Pp. 1–9. Doi.org/10.1615/TelecomRadEng.v75.i1.10(eng).

Piltyay S.I. High performance extended C-band 3.4-4.8 GHz dual circular polarization feed system. XI IEEE International Conference on Antenna Theory and Techniques. Ukraine. Kyiv 2017. Pp. 284-287. Doi.org/10.1109/ICATT.2017.7972644 (eng).

Kirilenko A.A., Steshenko S.O., Derkach V.N., Ostryzhnyi Y.M. A tunable compact polarizer in a circular wave-guide. IEEE Transactions on Microwave Theory and Techniques. 2019. vol. 67. no. 2. Pp. 592–596. Doi.org/10.1109/TMTT.2018.2881089(eng).

Bulashenko A.V., Piltyay S.I., Demchenko I.V. Analytical technique for iris polarizers development. IEEE International Conference on Problems of Infocommunications. Science and Technology. Ukraine. Kharkiv 2020. Pp. 464-469(eng).

Булашенко А.В., Пільтяй С.І., Демченко І.В. Оптимізація поляризатора на основі квадратного хвилеводу з діафрагмами. Наукоємні технології. 2020. V. 47, no. 3. P. 287–297. Doi.org/10.18372/2310-5461.47.14878.

Piltyay S.I., Bulashenko A.V., Demchenko I.V. Compact polarizers for satellite information systems. IEEE International Conference on Problems of Infocommunications. Science and Technology. Ukraine, Kharkiv 2020, Pp. 350-355 (eng).

Piltyay S.I., Bulashenko A.V., Demchenko I.V. Waveguide iris polarizers for Ku-band satellite antenna feeds. Journal of Nano- and Electronic Physics. 2020. vol. 12. no. 5. Pp. 05024. Doi.org/10.21272/jnep.12(5).05024(eng).

Piltyay S.I., O. Yu. Sushko, Bulashenko A.V., Demchenko I.V. Compact Ku-band iris polarizers for satellite telecommunication systems. Telecommunications and Radio Engineering. 2020. vol. 79. no.19. Pp. 1673–1690. Doi.org/10.1615/TelecomRadEng.v79.i19.10(eng).

Piltyay S.I., Bulashenko A.V., Demchenko I.V. Analytical synthesis of waveguide iris polarizers. Telecommunications and Radio Engineering. 2020. vol. 79. no. 18, Pp. 1579–1597. Doi.org/10.1615/TelecomRadEng.v79.i18.10(eng).

Bulashenko A.V., Piltyay S.I., Demchenko I.V. Mathematical simulation and optimization of compact square waveguide iris polarizers. Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia. 2020. Vol. 83, pp. 5-15, 2020. Doi.org/10.20535/RADAP.2020.83.5-15(eng).

Bulashenko A., Piltyay S., Kalinichenko Ye., Bulashenko O. Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers. IEEE International Conference on Advanced Trends in Infor-mation Theory. Ukraine, Kyiv 2020, Pp. 121-126 (eng).

Булашенко А.В., Пільтяй С.І., Калініченко Є.І., Булашенко О.В. Регульований поляризатор на основі квадратного хвилеводу із діафрагмами та штирями. Технічна інженерія. 2020. V. 86. No. 2. P. 108-116. Doi.org/10.26642/ten-2020-2(86)-108-116.

Piltyay S., Bulashenko A., Kushnir H., Bulashenko O. New tunable-post square waveguide polarizers for satellite information systems. IEEE International Conference on Advanced Trends in Information Theory. Ukraine, Kyiv 2020, Pp. 132-137 (eng).

Piltyay S., Bulashenko A., Herhil Ye., Bulashenko O. FDTD and FEM simulation of microwave waveguide polarizers. IEEE International Conference on Advanced Trends in Information Theory. Ukraine, Kyiv 2020, Pp. 190-195 (eng).

Tascone R., Savi P., Trinchenko D., Orta R. Scattering matrix approach for the design of microwave filter. IEEE Transactions on Microwave Theory and Technique. 2000. vol. 48. no.3. Pp. 423–430. Doi.org/10.1109/22.826842 (eng).

Sanchez J.R., Bachiller C., Julia M., Nova B., Esteban H., Boria V. E. Microwave filter based on substrate inte-grated waveguide with alternating dielectric line sections. IEEE Microwave and Wireless Components Letters. 2018. vol. 28. no. 11. Pp. 990–992. Doi.org/10.1109/LMWC.2018.2871644 (eng).

Омельяненко М.Ю., Романенко Т.В. Волноводно-планарные полосо-пропускающие фильтры с широкой полосой заграждения. Вісник НТУУ «КПІ» Серія Радіотехніка, Радіоапаратобудування. 2020. V. 80. P. 5-13. Doi.org/10.20535/RADAP.2020.80.5-13.

Lyu Y.-P., Zhu L., Cheng C.-H. Proposal and synthesis design of differential phase shifters with filtering func-tion. IEEE Transactions on Microwave Theory and Techniques. 2017. vol. 65. no. 8. Pp. 2906–2917. Doi.org/10.1109/TMTT.2017.2673819 (eng).

Zheng S.Y., Chan W.S., Man K.F. Broadband phase shifter using loaded transmission line, IEEE Microwave and Wireless Components Letters. 2010. vol. 20. no.9. Pp. 498–500. Doi.org/10.1109/LMWC.2010.2050868 (eng).

Булашенко А.В. Багатопроменеві антенні решітки на основі лінз Ротмана (огляд). Вісник НТУУ «КПІ» Серія Радіотехніка, Радіоапаратобудування. 2010. V. 42. P. 178-186. Doi.org/10.20535/RADAP.2010.42.178-186.

Булашенко А.В. Принципи формування променя інтелектуальних антен. Вісник Сумського державного університету. Серія Технічні науки. 2010. V. 1. P. 111-120. https://essuir.sumdu.edu.ua/handle/123456789/956.

Булашенко А.В., Дубровка Ф.Ф. Живлення антенних решіток на основі лінз Ротмана (огляд). Вісник Сумського державного університету. Серія Технічні науки. 2010. V. 3. P. 113-120. https://essuir.sumdu.edu.ua/handle/123456789/4572.

Cho Y.H., Eom H.J. Analysis of a ridge waveguide using overlapping T-blocks. IEEE Transactions on Microwave Theory and Tech. 2002. vol. 50. no. 10. Pp. 2368-2373. Doi.org/10.1109/TMTT.2002.803449(eng).

Zhang H.Z. An integrated coaxial circular-polarised OMJT/OMT for dual-band feed applications. In IEEE Anten-nas and Propagation Society International Symposium. USA, Washington 2005. Pp. 647-650. Doi.org/10.1109/APS.2005.1551894(eng).

Pollak A.W., Jones M.E., A compact quad-ridge orthogonal mode transducer with wide operational bandwidth. IEEE Antennas and Wireless Propagation Letters. 2018. vol. 17. no. 3. Pp. 422–425. Doi.org/10.1109/LAWP.2018.2793465 (eng).

Dubrovka F.F., Piltyay S.I. Prediction of eigenmodes cutoff frequencies of sectoral coaxial ridged waveguides Int. Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, Lviv–Slavske, 2012, p. 191 (eng).

Piltyay S.I. Numerically effective basis functions in integral equation technique for sectoral coaxial ridged wave-guides. In 14-th Int. Conf. on Math. Methods in Electromagnetic Theory, Ukraine, Kyiv 2012, Pp. 492–495. Doi.org/10.1109/MMET.2012.6331195(eng).

Rud L.A., Shpachenko K.S. Polarizers on a segment of square waveguide with diagonally ridges and adjustment iris. Radioelectronins and Communications Systems. 2012. vol. 55. no. 10. Pp. 458-463. Doi.org/ 10.3103/S0735272712100044(eng).

Piltyay S.I., Dubrovka F.F. Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory. Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia. 2013. vol. 54. Pp. 13-23. Doi.org/10.20535/RADAP.2013.54.13-23.

Kirilenko A.A., Kulik D.Yu., Prikolotin S.A., Rud L.A., Steshenko S.A. Stepped approximation technique for designing coaxial waveguide polarizers. In IX Int. Conf. on Antenna Theory and Tech. Ukraine, Odessa 2013. Pp. 470–472. Doi.org/10.1109/ICATT.2013.6650815(eng).

Piltyay S.I. Enhanced C-band coaxial orthomode transducer. Visnik NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. 2014. Vol. 58. pp. 27–34. Doi.org/10.20535/RADAP.2014.58.27-34(eng).

Dubrovka F.F., Piltyay S.I. Eigenmodes of coaxial quad-ridged waveguides. Theory. Radioelectronics and Com-munications Systems. 2014. Vol. 57. no 1, Pp. 1–30. Doi.org/10.3103/S0735272714010014(eng).

Dubrovka F.F., Piltyay S.I. Eigenmodes of coaxial quad-ridged waveguides. Numerical result. Radioelectronics and Comm. Systems. 2014. vol. 57. no 2. Pp. 59–69. Doi.org/10.3103/S0735272714020010(eng).

Dubrovka F.F., Piltyay S.I. Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds. XI IEEE Int. Conf. on Antenna Theory and Techniques. Ukraine. Kyiv 2017, Pp. 277-280. Doi.org/10.1109/ICATT.2017.7972642(eng).

Dubrovka F.F., Piltyay S.I. Boundary problem solution for eigenmodes in coaxial quad-ridged waveguides. Information and Telecommunication Sciences. 2014. vol. 5. no. 1. Pp. 48–61. Doi.org/10.20535/2411-2976.12014.48-61(eng).

Agnihotri I., Sharma S.K. Design of a compact 3D metal printed Ka-band waveguide polarizer, IEEE Antennas and Wireless Propagation Letters. 2019. vol. 18. no. 12. Pp. 2726-2730. Doi.org/10.1109/LAWP.2019.2950312 (eng).

Mishra G., Sharma S.K., Chieh J.-C. A circular polarized feed horn with inbuilt polarizer for offset reflector antenna for W-band CubeSat applications, IEEE Transactions on Antennas and Propagation. 2019. vol. 67. no. 3. Pp. 1904-1909. doi.org/10.1109/TAP.2018.2886704 (eng).

Moharram M.A., Mahmoud A., Kishk A.A. A simple coaxial to circular waveguide OMT for low-power dual-polarized antenna applications, IEEE Transactions on Microwave Theory and Techniques. 2018. vol. 66. no. 1. Pp. 109-115. doi.org/10.1109/TMT.2017.2734089 (eng).

Issue

Section

Electronics, telecommunications and radio engineering