Optimization of a polarizer based on a square waveguide with irises

Authors

  • Андрій Васильович Булашенко National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute»
  • Степан Іванович Пільтяй National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute»
  • Іван Вольдемарович Демченко National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute»

DOI:

https://doi.org/10.18372/2310-5461.47.14878

Keywords:

polarizer, waveguide, iris, transfer matrix, scattering matrix, differential phase shift, voltage standing wave ratio, axial ratio, crosspolar discrimination.

Abstract

Antenna systems with polarization signal processing are key element of modern satellite telecommunications systems. In such systems polarization processing is performed by waveguide polarizers. Thus, the development of the design of new polarizers, the creation of new methods for their analysis and optimization are important problems. Waveguide polarizers with irises are the most efficient and technologically advanced in manufacturing. Moreover, they provide wide bandwidths. Optimization of the electromagnetic characteristics of a waveguide polarizer with irises is the goal of the study. To achieve this purpose, we solve the problem to create a new mathematical model, which makes it possible to analyze the influence of the polarizer design parameters on its electromagnetic characteristics. In the investigation a model of a waveguide polarizer with irises was created using the theory of microwave circuits. A new analytical model of such a polarizer has been developed using a general wave scattering matrix. The main characteristics of the waveguide polarizer were determined through the matrix elements. In this work the optimization of characteristics of a polarizer based on a square waveguide with irises has been carried out in Ku-band 10.7–12.8 GHz. The presented mathematical model of such a polarizer allows to take into account the heights of the irises, the distances between them and their thicknesses. The results obtained show that the proposed model is simpler for calculation of the electromagnetic characteristics in comparison with the finite integration technique, which is used to analyze microwave devices for various purposes.

Author Biographies

Андрій Васильович Булашенко, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute»

senior lecturer, department of theoretical foundations of radio engineering

Степан Іванович Пільтяй, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute»

candidate of technical sciences, associate professor, department of theoretical foundations of radio engineering

Іван Вольдемарович Демченко, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute»

master's student, department of radio processing and signal reception

References

Pozar D.M. Microwave Engineering. Antennas: From Theory to Practice. Hoboken, New Jersey: John Wiley and Sons, 2012., 732 p.

Gao S., Luo Q., Zhu F. Circularly polarized Antennas Theory and Design. Chichester: John Wiley and Sons, 2014, 322p.

Sellal K., Talbi L., Denidni T., Lebel J. A new substrate integrated waveguide phase shift. Proc. 2006 European Microwave Conference, UK, Manchester, 2006, pp. 72-75. doi.org/10.1109/EUMC.2006.281184 (eng).

Bull J.D., Kato H., Jaeger N.A.F. Asymmetrically strained ridge waveguide for passive polarization conversion, IEEE Photonics Technology. 2008. vol. 20. no. 24. 2186–2188. doi.org/10.1109/LPT.2008.2007221 (eng).

Virone G., Tascone R., Peverinin O.A., Orta R., Optimum iris set concept for waveguide polarizers, IEEE Microwave and Wireless Components Letters. 2007. vol. 17. no.3. 202–204. doi.org/10.1109/LMWC.2006.890474 (eng).

Eleftheriades G.V., Omar A.S., Katehi L.P.B., Rebeiz G.M., Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique, IEEE Transactions on Microwave Theory and Techniques. 1994. vol. 42. no.10. 1896–1903. doi.org/10.1109/22.320771 (eng).

Yu S.Y., Bornemann J., Classical eigenvalue mode-spectrum analysis of multiple-ridged rectangular and circular waveguides for the design of narrowband waveguide components, International Journal of Numerical Mod-eling. 2009. vol. 22. 395–410. doi.org/10.1002/JNM.716 (eng).

Piltyay S.I., Dubrovka F.F., Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory, Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia. 2013. vol. 54. 13-23. doi.org/10.20535/RADAP.2013.54.13-23 (eng).

Dubrovka F.F., Piltyay S.I. Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 2. Results, Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia. 2013. vol. 55. 13-23. doi.org/10.20535/RADAP.2013.55.13-23 (eng).

Sun W., Balanis C. A. MFIE analysis and design of ridged waveguides, IEEE Trans. Microwave Theory Tech, 1993. vol. 41. no. 11. 1965–1971. doi.org/10.1109/22.273423 (eng).

Serebryannikov A. E., Vasylchenko O. E., Schunemann K., Fast coupled-integral-equations-based analysis of azimuthally corrugated cavities, IEEE Microwave Wireless Comp. Lett. 2004. vol. 14. no 5. 240–242. doi.org/10.1109/LMWC.2004.827833 (eng).

Piltyay S.I. Numerically effective basis functions in integral equation technique for sectoral coaxial ridged wave-guides, Proceedings of 14-th International Conference on Mathematical Methods in Electromagnetic Theory (MMET*12). Ukraine. Kyiv. 2012. 492–495. doi.org/10.1109/MMET.2012.6331195 (eng).

Amari S., Bornemann J., Vahldieck R. Application of a coupled-integral-equations technique to ridged wave-guides, IEEE Trans. Microwave Theory Tech. 1996. vol. 44. no. 12. 2256–2264. doi.org/10.1109/22.556454 (eng).

Tascone R., Savi P., Trinchenko D., Orta R., Scattering matrix approach for the design of microwave filter, IEEE Transactions on Microwave Theory and Technique. 2000. vol. 48. no.3. 423–430. doi.org/10.1109/22.826842 (eng).

Amari S., Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique, IEEE Transactions on Microwave Theory and Techniques. 2000. vol. 48. no. 9. 1559–1564. doi.org/10.1109/22.869008 (eng).

Sanchez J.R., Bachiller C., Julia M., Nova B., Esteban H., Boria V. E., Microwave filter based on substrate integrated waveguide with alternating dielectric line sections, IEEE Microwave and Wireless Components Letters. – 2018. – Vol. 28, no. 11. – pp. 990–992. doi.org/10.1109/LMWC.2018.2871644 (eng).

Омельяненко М.Ю., Романенко Т.В. Волноводно-планарные полосо-пропускающие фильтры с широкой полосой заграждения, Вісник НТУУ «КПІ» Серія Радіотехніка, Радіоапаратобудування. – 2020. – Vol. 80. – pp. 5-13. doi.org/10.20535/RADAP.2020.80.5-13.

Zheng S.Y., Chan W.S., Man K.F., Broadband phase shifter using loaded transmission line, IEEE Microwave and Wireless Components Letters. 2010. vol. 20. no.9. 498–500. doi.org/10.1109/LMWC.2010.2050868 (eng).

Lyu Y.-P., Zhu L., Cheng C.-H., Proposal and synthesis design of differential phase shifters with filtering func-tion, IEEE Transactions on Microwave Theory and Techniques. 2017. vol. 65. no. 8. 2906–2917. doi.org/10.1109/TMTT.2017.2673819 (eng).

Tikhov Y., Comparison of two kinds of Ka-band circular polarisers for use in a gyro-travelling wave amplifi-er, IET Microwaves Antennas and Propagation. 2016. vol. 10. no. 2. 147-151. doi.org/10.1049/IET-MAP.2015.0292 (eng).

Piltyay S.I., High performance extended C-band 3.4-4.8 GHz dual circular polarization feed system, XI IEEE International Conference on Antenna Theory and Techniques (ICATT). Ukraine. Kyiv 2017. 284-287. doi.org/10.1109/ICATT.2017.7972644 (eng).

Pollak A.W., Jones M.E., A compact quad-ridge orthogonal mode transducer with wide operational bandwidth IEEE Antennas and Wireless Propagation Letters. 2018. vol. 17. no. 3. 422–425. doi.org/10.1109/LAWP.2018.2793465 (eng).

Agnihotri I., Sharma S.K., Design of a compact 3D metal printed Ka-band waveguide polarizer, IEEE Antennas and Wireless Propagation Letters. 2019. vol. 18. no. 12. 2726-2730. doi.org/10.1109/LAWP.2019.2950312 (eng).

Mishra G., Sharma S.K., Chieh J.-C., A circular polarized feed horn with inbuilt polarizer for offset reflector antenna for W-band CubeSat applications, IEEE Transactions on Antennas and Propagation. 2019. vol. 67. no. 3. 1904-1909. doi.org/10.1109/TAP.2018.2886704 (eng).

Deutschmann B., A.F. Jacob, Broadband septum polarizer with triangular common port, IEEE Transactions on Microwave Theory and Techniques. 2020. vol. 68. no. 2. 693-700. doi.org/10.1109/TMTT.2019.2951138 (eng).

Dubrovka F.F., Piltyay S.I., Dubrovka R.R., Lytvyn M.M., Lytvyn S.M., Optimum septum polarizer design for various fractional bandwidths, Radioelectron. Commun. Syst. 2020. vol. 63. no. 1. 15–23. doi.org/10.3103/І07352720010021 (eng).

Collin R.E. Fondations for microwave engineering. New Jersey: John Wiley and Sons, 2001, 945p.

Marcuvitz N. Waveguide handbook, USA, Short Run Press Ltd., 1986, 446p.

Published

2020-10-13

Issue

Section

Electronics, telecommunications and radio engineering