Calculation methods power generation of the laser beam
DOI:
https://doi.org/10.18372/2310-5461.46.14804Keywords:
laser, power, laser system, laser irradiationAbstract
The choice of a laser for carrying out a technological operation is determined by the specifics of the effect of laser radiation on this material and the features of the assigned technological task. The main parameters characterizing laser radiation are power, radiation wavelength, radiation exposure duration, energy and pulse repetition rate, as well as coherence, directivity, monochromaticity and polarization of radiation. Most laser technologies are based on the thermal effect of radiation, that is, it is assumed that the object to be heated must be heated to a given temperature. Therefore, the main characteristic of the laser used in such technologies is its power. For pulsed lasers, the power in a pulse and the average power, which depends on the duration and pulse repetition rate, are considered.
In this work, we calculated the power of the laser beam generation depending on the design of the oprichnina quantum generator. The analysis is carried out depending on the parameters of laser irradiation, especially on the design of laser generators, that is, on the layout and placement of elements of an optical quantum generator. To achieve maximum laser efficiency, it is necessary to create such a resonator design and the shape of the active medium that allow their volumes to be combined in the best way when the fraction of the upper laser level dispersion as a result of spontaneous and relaxation transitions decreases and the fraction of stimulated transitions increases. As a result of optimizing the parameters of the optical generator, the radiation energy density reaches high, striking values through a small beam size. The beam, spreading, changes slightly due to small divergence, respectively, there is a risk of damage even at a great distance. Moreover, in the case of the propagation of invisible radiation, the presence of danger may not be obvious, and even visible radiation will be noticeable in the air only in the presence of suspended particles.
References
Шуаібов О. К., Опачко І. І., Качер І. Е., Чучман М. П. Лазерні джерела випромінювання та їх застосування в мікроелектроніці: навч. посібник / Ужгород: Ужгородський національний університет, фізичний та інженерно-фізичний факультети, 2009.
Gnatyuk V. A., Aoki T., Vlasenko O. I., Levytskyi S. N., Dauletmuratov B. K., Lambropou¬los C. P. Modification of the surface state and doping of CdTe and CdZnTe crystals by pulsed laser irradiation. Applied Surface Science. 2009. Vol. 255. No 24. Pр. 9813–9816.
DOI.ORG/10.1016/J.APSUSC.2009.04.096
Veleshchuk V. P., Baidullaeva A., Vlasenko A. I., Gnatyuk V. A., Dauletmuratov B. K., Levitskyi S. N., Lyashenko O. V., Aoki T. Mass transfer of indium in the In-CdTe structure under nanosecond laser irradiation. Physics of the Solid State. 2010. Vol. 52. No 3. Pр. 469–476.
DOI: 10.1134/S1063783410030054
Gatskevich E., Ivlev G., Prikryl P., Cerny R., Chab V., Cibulka O. Pulsed laser-induced phase transformations in CdTe single crystals. Appl. Surf. Sci. 2005. Vol. 248. Pр. 259–263.
DOI.ORG/10.1016/J.APSUSC.2005.03.045
Golovan L. A., Markov B. A., Kashkarov P. K., Timoshenko V. Yu. Evaporation effect on laser induced solid-liquid phase transitions in CdTe and HgCdTe. Solid State Commun. 1998. Vol. 108. No 10. Pр. 707–712. DOI: 10.1016/S0038-1098(98)00485-2
Gnatyuk V. A., Aoki T., Gorodnychenko O. S., Hatanaka Y. Solid-liquid phase transitions in CdTe crystals under pulsed laser irradiation. Appl. Phys. Lett. 2003. Vol. 83. No 18. Pр. 3704–3706. https://doi.org/10.1063/1.1625777
Aoki T., Gnatyuk V.A., Nakamura A., Tomita Y., Hatanaka Y., Temmyo J. Study of a CdTe high- energy radiation imaging device fabrication by excimer laser processing. Phys. Stat. Sol. (c). 2004. Vol. 1. No 4. Pр. 1050–1053. DOI 10.1002/pssc.200304177
Gnatyuk V. A., Levytskyi S. N., Vlasenko O. I., Aoki T. Formation of doped nano-layers in CdTe semiconductor crystals by laser irradiation with nanosecond pulses. Thai Journal of Nanoscience and Nanotechnology. 2016. Vol. 1. Issue 2. Pр. 7–16.
Veleshchuk V. P., Vlasenko O. I., Vlasenko Z. K., Gnatyuk V. A., Levytskyi S. N. Dependence of the CdTe melting threshold on the pulse duration and wavelength of laser radiation and the parameters of non-equilibrium charge carriers. Ukrainian Journal of Physics. 2017. Vol. 62. No 2. Pр. 159–165. DOI.ORG/10.15407/UJPE62.02.0159
Zelenska K., Gnatyuk V., Veleschuk V., Aoki T. Pulsed laser deposition of indium on the CdTe crystal surface for contact formation. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX, Proceedings of SPIE. 2018. Vol. 10762. Pр. 1076218-1-6. DOI: 10.1117/12.2323380
Gentsar P. O., Levytskyi S. M. Influence of Laser Radiation on Optical Properties of Semiconductor Materials. PCSS. 2019. V. 20. № 4. Pр. 384–390. DOI: 10.15330/pcss.20.4.384-390
Альтудинов Ю. К., Гарицын А .Г. Лазерные микротехнологии и их применения в электронике. Москва: Радио и связь, 2001.
Айрапетян В. С., Ушаков О. К. Физика лазеров: учеб. пособие. Новосибирск: СГГА, 2012.
Звелто О. Принципы лазеров. Москва: Мир, 1990.
Мэйтленд А., Дан М. Введение в физику лазеров. Москва: Наука, 1978.
Либенсон М. Н. Нагрев и разрушение тонких пенок излучением ОКГ. Физика и химия обработки материалов. 1968. № 2. C. 3–11.
Левинсон Г. Р., Смилга В. И. Экспериментальное исследование порогов разрушения тонких металлических пленок при воздействии лазерного излучения. Физика и химия обработки материалов. 1971. № 4. C. 124.
Левинсон Г. Р., Смилга В. И. Лазерная обработка тонких пленок. Квантовая электроника. 1967. Т. 3. № 8. C. 1637–1659.