Deep learning based image recognition system with neural network architecture.
DOI:
https://doi.org/10.18372/2310-5461.45.14572Keywords:
machine learning, deep learning, data, image recognition, perceptronAbstract
Machine learning allows us to obtain useful information from raw data for quick and efficient solving of complex data-intensive tasks. As a sub-sector of artificial intelligence, machine learning explores study and construction of algorithms that make data-based predictions and are capable of shaping the learning process accordingly - such algorithms are far more effective than the technique of using strictly static program instructions. Machine learning algorithms are used in a wide variety of computational tasks, where it is difficult or infeasible to design and implement an explicit algorithm with decent performance.
Deep learning is a branch of machine learning, based on a set of algorithms that model high-level abstractions in data by applying a depth graph with multiple processing layers, built from several linear or non-linear transformations. Research in this area is aimed at getting better representations and creating models for training on these representations from large-scale unlabeled data. Deep learning architectures such as deep neural networks, convolutional deep neural networks, deep belief networks and recurrent neural networks have been applied to fields including computer vision, speech recognition, natural language processing, sound recognition, and bioinformatics where they have produced cutting-edge results in a variety of cases.
This article covers the concepts of machine learning, deep learning and image recognition. A specific example (with step-by-step explanation) of using deep learning for building an image recognition system with a neural network architecture is given. The resulting system provides ample opportunities to automate the technological processes and increase their efficiency. The concept of the system can be adapted to the tasks of a new type.
References
Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006. ISBN 978-0-387-31073-2.
Wikipedia. Machine Learning. URL: https://en.wikipedia.org/wiki/Machine_learning (дата звернення: 24.01.2020)
Schmidhuber J. Deep Learning in Neural Networks: An Overview. Neural Networks. 2015. Vol. 61 pp. 85–117.
Bengio Yoshua, LeCun Yann, Hinton Geoffrey Deep Learning. Nature. 2015. Vol. 521 (7553). Pp. 436–444.
Image Recognition. URL: https://sightcorp.com/knowledge-base/image-recognition/ (дата звернення 24.01.2020)
Emerging Tech Research: Artificial Intelligence & Machine Learning. URL: https://pitchbook.com/news/reports/3q-2019-emerging-tech-research-artificial-intelligence-machine-learning (дата звернення 24.01.2020)
How computer vision can improve buyer conversion and retention for E-commerce sites. URL: https://www.clarifai.com/blog/how-computer-vision-can-improve-buyer-conversion-and-retention (дата звернення 24.01.2020)
Celebrating one year of Pinterest Lens. URL: https://newsroom.pinterest.com/en/post/celebrating-one-year-of-pinterest-lens (дата звернення 27.01.2020)
Artificial intelligence in E-commerce: benefits, statistics, facts, use cases & case studies. URL: https://apiumhub.com/tech-blog-barcelona/artificial-intelligence-ecommerce/ (дата звернення 17.02.2020)
Simple Digit Recognition OCR in OpenCV-Python. URL: https://stackoverflow.com/a/9620295 (дата звернення 01.02.2020)
A gentle introduction to OCR. URL: https://towardsdatascience.com/a-gentle-introduction-to-ocr-ee1469a201aa (дата звернен-ня 01.02.2020)
scikit-image. Image processing in Python. Label image regions. URL: https://scikit-im-age.org/docs/dev/auto_examples/segmentation/plot_label.html#sphx-glr-download-auto-examples-segmentation-plot-label-py (дата звернення 01.02.2020)
EAST: An Efficient and Accurate Scene Text Detector. URL: https://arxiv.org/pdf/1704.03155.pdf (дата звернення 01.02.2020)
SEE: Towards Semi-Supervised End-to-End Scene Text Recognition. URL: https://arxiv.org/pdf/1712.05404.pdf (дата звер-нення 01.02.2020)
STN-OCR: A single Neural Network for Text Detection and Text Recognition. URL: https://arxiv.org/abs/1707.08831 (дата звернення 01.02.2020)
Review: SSD — Single Shot Detector (Ob-ject Detection). URL: https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11 (дата звернення 01.02.2020)
Handwritten Digit Recognition using Ma-chine Learning. URL: https://medium.com/@himanshubeniwal/handwritten-digit-recognition-using-machine-learning-ad30562a9b64 (дата звернення 01.02.2020)
Fast, Simple and Accurate Handwritten Dig-it Classification by Training Shallow Neural Net-work Classifiers with the 'Extreme Learning Ma-chine' Algorithm. URL: https://www.researchgate.net/figure/Comparison-of-our-results-on-the-MNIST-data-set-with-published-results-using-other_fig5_281815053 (дата звернення 01.02.2020)
You Only Look Once: Unified, Real-Time Object Detection. URL: https://arxiv.org/abs/1506.02640 (дата звернення 30.01.2020)
YOLO: Real Time Object Detection. URL: https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection (дата звернення 30.01.2020)
The PASCAL Visual Object Classes Homepage. URL: http://host.robots.ox.ac.uk:8080/pascal/VOC/ (дата звернення 30.01.2020)
YOLO9000: Better, Faster, Stronger. URL: https://arxiv.org/abs/1612.08242 (дата звернення 30.01.2020)
YOLOv3: An Incremental Improvement. URL: https://arxiv.org/abs/1804.02767 (дата зве-рнення 30.01.2020)
Rubix ML. A high-level machine learning and deep learning library for the PHP language. URL: https://rubixml.com/ (дата звернення 17.02.2020)
MNIST database. URL: https://en.wikipedia.org/wiki/MNIST_database (дата звернення 03.02.2020)
CIFAR-10. URL: https://en.wikipedia.org/wiki/CIFAR-10 (дата зве-рнення 03.02.2020)
Iris flower dataset. URL: https://en.wikipedia.org/wiki/Iris_flower_data_set (дата звернення 03.02.2020)
Cyrillic-oriented MNIST. A dataset of Latin and Cyrillic letter images for text recognition. URL: https://github.com/GregVial/CoMNIST (дата звернення 03.02.2020)
PHP. Image Processing and GD. URL: https://www.php.net/manual/en/book.image.php (дата звернення 03.02.2020)
RubixML/MNIST. URL: https://github.com/RubixML/MNIST (дата звер-нення 03.02.2020)