PECULIARITIES OF SELECTION OF THE ELECTROMAGNETIC DISTRIBUTION MODEL RADIATION INSIDE THE ROOM

Authors

  • Денис Ілшатович Бахтіяров National Aviation University

DOI:

https://doi.org/10.18372/2310-5461.44.14322

Keywords:

electromagnetic field, diffraction, interference, controlled zone, radiowaves distribution model

Abstract

This article deals with the distribution of radio waves inside buildings and spaces to further build a system of defense of information from side-by-side electromagnetic radiation and intrusion. The presence of inside the building of walls, partions, furniture, electronic equipment, people and other objects creates a complex distribution of radio waves. Thus, the conditions for radio waves in the interior vary significantly from the distribution of radio waves in free space. The purpose of analyzing radio waves is to calculate the range of electromagnetic radiation and to determine the real characteristics of the signal. The classical approach to the settlement of the electromagnetic field is to calculate the tension of the field in a single isotropic space based on the laws of reflection, diffraction, and scattering. However, because of the special conditions in the room, the possibility of directly applying the method is excluded. Technical means of information processing, which in the process of carrying out its processing, storage and transmitting make it possible to generate electromagnetic radiation, which is by bit, or parasitic. Thus, the nonlinear processes in the equipment units of machinery are generated and emitted into the surrounding space by the side of the electromagnetic radiation and the radiation that can be sufficient for the radio to be acceptable at a certain distance from mechanical means. Therefore, it becomes urgent to determine the optimal model for the description of threats through the channel of leakage of electromagnetic radiation and intrusion, as well as the size of the controlled area, which controls the presence of unauthorized persons and unauthorized stay in the facility, and the ability to use intelligence equipment, because in this the area is likely to intercept information.

Author Biography

Денис Ілшатович Бахтіяров, National Aviation University

Senior lecturer

References

Kuhn M. G. Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations. Lecture Notes in Computer Science. 2018. № 1525. С. 124–142.

Mordechai Guri, Assaf Kachlon, Ofer Hasson GSMem: Data Exfiltration from Air-Gapped Computers over GSM Frequencies. USENIX Security Symposium. 2015. № 24. С. 849–864.

Киреева Н. В., Семенов А. В. Утечка информации по каналам ПЭМИ и способы их защиты. Международный журнал прикладных и фундаментальных исследований. 2016. С. 499–504.

Лыков Ю. В. Анализ источников ПЭМИ в современных ПЭВМ. Радиотехника. 2012. № 169. С. 196–207.

Спесивцев А. В., Вегнер В. А., Крутяков А. Ю. Защита информации в персональных ЭВМ. Радио и связь. 1992. С. 192.

Крылова С. Л. Исследование побочных электромагнитных излучений видеосистемы ПЭВМ в учебной лаборатории информационной безопасности. Modern problems and ways of their solution in science, transport, production and education. URL: https://www.sworld.com.ua/konfer35/597.pdf (дата звернення: 21.10.2019).

Ishii T. RF propagation in buildings. RFDesign Magazine. 1989. № 7. С. 45–49.

Iskander M. Outdoor/indoor propagation mod-eling for wireless communications systems. IEEE, USNC-URSI National Radio Science Meeting. 2001. № 15. С. 150–153.

Якимов А. Н., Андреев П. Г., Князева В. В. Моделирование распространения электромагнит-ных волн в помещении c учетом влияния местных предметов. Радиоэлектроника. URL: http://jre.cplire.ru/jre/feb15/14/text.html (дата звернення: 21.10.2019).

Bakhtiiarov D. I. Evaluation of energy availability of means to communicate with UAVs in conditions of radioelectronic countermeasures by the enemy. Information technology and security. 2016. Т. 4. № 1. P. 118–130.

Theodore S. Wireless Communications: Prin-ciples and Practice. 2012. 736 р.

Bakhtiiarov D. I., Lavrynenko O. Y., Kona-khovych G. F. A digital speech signal compression algorithm based on wavelet transform. Electronics and control systems. 2016. № 2. P. 30–36. DOI: 10.18372/1990-5548.48.11204.

Lavrynenko O. Y., Bakhtiiarov D. I., Kona-khovych G. F. Compression algorithm of voice control commands of uav based on wavelet transform. Sci-ence-Based Technologies. 2018. № 2. P. 137–142. DOI: 10.18372/2310-5461.38.12858.

Recomendations ITU-R P.1238. Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area net-works in the frequency range 900 MHz to 100 GHz. 2012. URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.1238-7-201202-S!!PDF-E.pdf (дата звернення: 21.10.2019).

Meiling Luo. Indoor radio propagation model-ing for system performance prediction. STIC Sant´e. Lyon, 2013. 128 p.

Digital mobile radio towards future generation systems (COST 231 Final Report). European Commis-sion. 1999. 443 p.

Бахтіяров Д. І., Козлюк І. О. Методика мо-дернізації моделі розповсюдження радіохвиль в середині приміщення для побудови контрольова-ної зони корпоративної мережі. Наукоємні техно-логії. 2019. №3. Т.43. С. 349–356. DOI: 10.18372/2310-5461.43.13987.

Issue

Section

Electronics, telecommunications and radio engineering