METHOD OF TRANSFORMANT CODE DESCRIPTION CODING BASED ON INDEPENDENT CODE STRUCTURES IN THE TECHNOLOGY OF THE VIDEO-STREAM INTENSITY CONTROL

Authors

  • Володимир Вікторович Бараннік Kharkiv National University of the Air Force. Ivan Kozhedub
  • Юрій Миколайович Рябуха Kharkiv National University of the Air Force. Ivan Kozhedub
  • Віталій Вікторович Твердохліб Kharkiv National University of Radio Electronics
  • Юрій Михайлович Бабенко Taras Shevchenko National University of Kyiv
  • Анатолій Дмитрович Сорокун National Aviation University

DOI:

https://doi.org/10.18372/2310-5461.43.13979

Keywords:

Bit-plane, DCT transformant, information intensity, video-stream

Abstract

The article provides a general description of the approach to building a code representation of video stream fragments, namely, a DCT transformer. Such code representation is a set of codograms of individual bit planes of transformants. In turn, a codogram of each bit plane is constructed using the detection of the lengths of a series of binary elements within each of them. Detection of a series of binary elements within the proposed method is in the direction of the rows. The resulting bitmap codes are formed on the basis of non-equilibrium position codes. Unlike traditional coding techniques that aim at reducing probabilistic statistical redundancy, in this case, the structural redundancy of the bit description of video stream frame transforms is eliminated. In this case, the code description of each of the transformants is formed separately. In other words, within the code structures, the transformants of each of the codograms of its bit planes are independent of each other. That is, with the exception of one or more codograms that carry a description of one or another number of bit planes, no transformants occur on the receiving side of the destruction of the entire code description. That is, the generated code description allows you to repair the transformant on the receiving side with some errors. It turns out that such manipulation of the number of codograms that were initially used to describe the transform of the video stream frame allows to change the number of bits required for its code description. Thus, in this way, there is actually an additional reduction in the information intensity of the transmitted data, in addition to the reduction that is achieved by actually translating the transformant description to the appearance of the position code. In turn, this makes it possible to use the encoding method in question as a basis for video intensity management technology. The developed method does not require significant computing power for its effective functioning, since the construction of the bit description code requires less hardware resources by reducing the dynamic range of computation compared to component coding.

Author Biography

Володимир Вікторович Бараннік, Kharkiv National University of the Air Force. Ivan Kozhedub

doctor of Technical Sciences, professor

References

VNI Forecast Highlights Tool. URL: https://www.cisco.com/c/m/en_us/solutions/service-provider/vni-forecast-highlights.html (дата звернення 26.07.2019)

Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство ар-хиваторов, сжатие изображений и видео. М. : ДИАЛОГ–МИФИ, 2003. 384 с.

Гонсалес Р., Вудс Р. Цифровая обработка изображений. М. : Техносфера, 2005. 1073 с.

Миано Дж. Форматы и алгоритмы сжатия изображений в действии: учеб. пособие; пер. с англ. М. : Триумф, 2003. 336 с.

Ричардсон Ян. H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Mul-timedia. М. : Техносфера, 2005. 368 с.

Shi Yun Q. Image and video compression for multimedia engineering: fundamentals, algorithms, and standards. CRC Press, NY, 2008, 576 p.

Ablamejko S. V., Lagunovskij D. M. Obrabotka izobrazhenij: tehnologija, metody, primenenie. Minsk, 2000. 303 p.

Salomon. D. Data Compression: The Com-plete Reference. Fourth Edition. Springer-Verlag Lon-don Limited, 2007. 899 p.

Barannik V. V., Kharchenko N. A., Tverdokhleb V. V., Kulitsa O. The issue of timely delivery of video traffic with controlled loss of quali-ty. Proceedings of the International Conference on Modern Problems of Radio Engineering. Telecommu-nications and Computer Science (TCSET). 2016. pp. 902–904. DOI: 10.1109/TCSET.2016.7452220

Barannik V. V., Krasnoruckiy A., Hahanova A. The positional structural-weight coding of the bina-ry view of transformants. Proceedings of the Interna-tional Conference on East-West Design and Test Sym-posium (EWDTS), September 2013, pp. 1–4. DOI: 10.1109/EWDTS.2013.6673178

Barannik V., Podlesny S., Tarasenko D., Barannik D., Kulitsa O. The video stream encoding method in infocommunication systems, Proceedings of the International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). Lviv, 2018. pp. 538–541, DOI: 10.1109/TCSET.2018.8336259.

Zhang Y., Negahdaripour S., Li Q. Error-resilient coding for underwater video transmission, OCEANS 2016 MTS/IEEE Monterey, Monterey. CA, 2016. pp. 1–7.

Wang S., Zhang X., Liu X., Zhang J., Ma S.,

Gao W. Utility-Driven Adaptive Preprocessing for Screen Content Video Compression, IEEE Transac-tions on Multimedia. 2017. vol. 19. no. 3. pp. 660–667.

Baccouch H., Ageneau P. L., Tizon N., Bou-khatem N. Prioritized network coding scheme for mul-tilayer video streaming. Proceedings of the Interna-tional Conference on 14th IEEE Annual Consumer Communications & Networking Conference (CCNC). 2017. pp. 802–809.

Tsai W. J., Sun Y. C. Error-resilient video coding using multiple reference frames, Proceedings of the International Conference on IEEE International Conference on Image Processing. 2013. pp. 1875–1879.

Rao K. R., Hwang J. J. Techniques and Standards for Image, Video and Audio Coding. Eng-lewood Cliffs. NJ: Prentice-Hall, 1996.

Ding Z., Chen H., Gua Y., Peng Q. GPU ac-celerated interactive space-time video matting. Com-puter Graphics International. 2010. P 163–168.

Christophe E., Lager D., Mailhes C. Quality criteria benchmark for hiperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing. 2005. Vol. 43. No 9. pp. 2103–2114.

Lee S. Y. Yoon J. C. Temporally coherent video matting. Graphical Models 72. 2010. P. 25-33.

Barannik V. V., Ryabukha Yu. N., Podlesnyi S. A. Structural slotting with uniform redistribution for enhancing trustworthiness of information streams, Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 2017. No. 76 (7). pp. 607. DOI: 10.1615/ TelecomRadEng.v76.i7.40.

Chigorin A., Krivovyaz G., Velizhev A., Ko-nushin A. A method for traffic sign detection in an image with learning from synthetic data, Proceedings of the International Conference on Digital Signal Pro-cessing and its Applications. 2012. pp. 316–335.

Issue

Section

Information technology, cybersecurity