METHODOLOGY FOR RESTRUCTURING INFORMATION RESOURCE DATA TO IMPROVE THE EFFICIENCY OF STATISTICAL CODING
DOI:
https://doi.org/10.18372/2310-5461.42.13801Keywords:
restructuring, quantitative attribute, codingAbstract
In modern coding algorithms, "data restructurings" are actively used for a more favorable representation of coded data. Under this notion is the transformation of the source data into a more convenient form in order to increase the efficiency of the representation of coded data.The article discusses issues related to the development of a new approach to data restructuring in order to improve the efficiency of statistical coding from the standpoint of increasing protection and reducing the length of information presentation. Existing data restructuring methods of the information resource, which are used to better present the coded data, are investigated. The disadvantages of external data restructuring methods that are actively used in modern information coding algorithms are analyzed. A fundamentally new approach to the restructuring of information resource data has been developed - internal restructuring, which is to identify patterns in the internal structure of message elements by a quantitative attribute. The requirements for the quantitative trait are analyzed. A comparative analysis of existing data restructuring methods is carried out. To improve the efficiency of statistical coding from the standpoint of reducing the length of the presentation of information and improve the protection of the information resource, it is proposed to use the method of internal restructuring of data by quantitative attribute.The determined direction induces the further development of the concept for the formation of a quantitative trait for using the method of internal restructuring of the data resource in statistical coding methods in order to increase the efficiency of statistical coding from the point of increasing security and reducing the length of the presentation of information.References
Сэломон Д. Сжатие данных, изображений и звука: Пер. с англ. В.В. Чепыжова. М.: Техносфера, 2004. 368 с.
Кудряшов Б.Д. Теория информации. СПб: Питер, 2009. 320 с.
Гонсалес Р., Вудс Р. Цифровая обработка изображений. М. : Техносфера, 2005. 1073 c.
Miano J. Compressed image file formats: JPEG, PNG, GIF, XBM, BMP / by John Miano, 1999. 264 p.
Мандель И. Д. Кластерный анализ. М.: Финансы и Статистика, 1988. 543 c.
Pratt W. K., Chen W. H., Welch L. R. Slant transform image coding. Proc. Computer Processing in communications. New York: Polytechnic Press, 1969. P. 63 84.
Jain A., Murty M., Flynn P. Data clustering: A review. ACM Computing Surveys. 1999. Vol. 31, no. 3. pp. 264–323.
Miano J. Formats and image compression algorithms in action. K.: Triumph, 2013. 336 p.
Ding Z., Chen H., Gua Y., Peng Q. GPU accelerated interactive space-time video matting. In Computer Graphics International. 2010. P. 163 168.
Lee S. Y., Yoon J. C. Temporally coherent video matting. Graphical Models 72. 2010. P. 25-33.
Воронцов К.В. Алгоритмы кластеризации и многомерного шкалирования. Курс лекций. МГУ, 2007. 145 c.
Lazarovych I., Melnychuk S., Kozlenko M. Optimization of entropy estimation computing algoritm for random signals in digital communication devices. Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), 14th International Conference, 2018. P. 1073-1078.
Tso B., Mather P.M. Classification methods for remotely sensed data. US, CRC Press, 2009, 349 p.
Grundmann M., Kwatra V., Han M., Essa I. Efficient hierarchical graph based video segmentation. IEEE CVPR. 2010. P. 85 91.
Zhang Y., Negahdaripour S., Li Q. Error-resilient coding for underwater video transmission. OCEANS 2016 MTS/IEEE Monterey, Monterey. CA. 2016. pp. 1-7.
Musienko A., Ganjaric J. Technology of coding of digital aerial photographs taking into account classes of a semantic saturation of blocks in system of air monitoring. Engineer of XXI Century: VII Inter University Conference of Students, PhD Students and Young Scientists (08 December 2016 at the University of Bielsko-Biała (ATH) / Bielsko-Biała), Poland, 2016. pp. 215-220.
Barannik V., Sidchenko S., Tupitsya I., Stasev S. Synthesis of combined crypto-compressed systems for providing safety video information in info-communications. EWDTS: 2015 IEEE East-West Design & Test Symposium, Batumi, Georgia, 2015, pp. 1-4. DOI:10.1109/EWDTS.2015.7493145
Barannik V., Tupitsya I., Sidchenko S., Tarnopolov R. The method of crypto-semantic presentation of images based on the floating scheme in the basis of the upper boundaries. Problems of Infocommunications Science and Technology: 2nd International Scientific-Practical Conference PIC S and T 2015 (13 – 15 October 2015, Kharkiv), Ukraine. pp. 248-250, DOI:/10.1109/Infocommst.2015.7357326
Barannik V., Tupitsya I., Shulgin S., Sidchenko S., Larin V. The application for internal restructuring the data in the entropy coding process to enhance the information resource security. EWDTS: 2016 IEEE East-West Design & Test Symposium, Yerevan, Armenia, 2016. pp. 561-565. DOI:10.1109/EWDTS.2016.7807749
Бараннік В.В., Тупиця І.М., Бараннік В.В., Сорокун А.Д. Технологія кластеризації даних інформаційного ресурсу за кількісною ознакою ресурса. Наукоємні технології. 2018. Вип. 4(40). С. 398-404. DOI: 10.18372/2310-5461.40.13264
Barannik V., Tupitsya I., Dodukh O., Barannik V., Parkhomenko M. The Method of Clustering Information Resource Data on the Sign of the Number of Series of Units as a Tool to improve the Statistical Coding Efficiency. CADSM: 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (February 26 – March 2 2019, Polyana-Svalyava (Zakarpattya)), Ukraine. pp. 3/32-3/36.