COMPARATIVE ANALYSIS OF EXTRAPOLATION METHODS OF LABORATORY DATA TO THE ECOSYSTEM LEVEL IN AQUATIC ECOTOXICOLOGY
DOI:
https://doi.org/10.18372/2310-5461.42.13753Keywords:
extrapolation of data, bioassay, safe concentration, phenol, aquatic ecosystem, method of safety factors, empirical statistical models, method of Kooijman, method of Van Straalen and DennemanAbstract
In order to assess the environmental effects during risk assessment, in practice it is impossible to conduct laboratory and field studies for all types of organisms in the biocenosis, as well as accurately reproduce in a laboratory experiment all combinations of conditions and factors of influence. That is why it is necessary to find the most precise model of data extrapolation from laboratory toxicological experiments - bioassays - to the level of aquatic ecosystem. Regardless of the calculation method, all such models are based on determining the predicted no-effect concentration of the pollutant for living organisms that populate the reservoir.
Different methods of extrapolation of laboratory toxicity data to ecosystem level are compared by the example of determining the toxicity of phenol to water bodies. Calculation is based on bioassay results and carried out by methods of safety factors and empirical statistical models (Kooijman's method and method of Van Straalen and Denneman).
The method of safety factor is the simplest and fastest, but its outcome strongly depends on the quantity and quality of the toxicity profile data and does not include the probability estimation. The safe concentration value, calculated by the method of Van Straalen and Denneman, is the highest. The error occurring during estimation of NOEC on the basis of LС(EС)50 values affects on the calculation in this case. Instead, the Kooijjman method is very precise. The safe concentration calculated according to this method is significantly understated in comparison with the results of other methods, because it strongly depends on the number of species inhabiting the aquatic ecosystem and the number of investigated test objects.
It has been found that when using the Kooijman's method too high backward LС(EС)50 values of the least sensitive test objects significantly reduce the safe concentration of a pollutant. These may cause difficulties in decision-making process. In order to obtain the most reliable results, it is recommended not to consider too backward LС(EС)50 values using Kooijman's method for calculation of safe concentration of the pollutant and to take into consideration all values from LС(EС)50 calculation line using the method of Van Straalen and Denneman.
References
Extrapolation practice for ecotoxicological effect characterization of chemicals / K. R. Solomon, T. С. M. Brock, D. De Zwart et al. – Boca Raton: CRC Press, 2008. – 408 p., doi:10.1002/ieam.5630050225.
Поромов А. А., Терехова В. А., Шитиков В. К. Проблемы использования экстраполяции при оценке риска загрязнения природной среды. Biodiagnostics and assessment of environmental quality: approaches, methods, criteria and reference standards in ecotoxicology. Book of Abstracts of the International Symposium, October 25-28, 2016, Moscow, Russia, GEOS, 2016. 434 p. GEOS, 2016. С. 180–189.
Бойченко С.В., Черняк Л.М., Радомская М.М., Бондарук А.В. Проблема очищення природних водойм, забруднених стічними водами об'єктів сфери нафтопродуктозабезпечення. Наукоємні технології. 2015. № 4 (28), C. 353 – 357. doi:10.18372/2310-5461.28.9682
Forbes V. E., Calow, P. Species sensitivity distributions revisited: A critical appraisal. Human and Ecological Risk Assessment. 2002. no. 8 (3). 473-492. doi:10.1080/10807030290879781.
Kooijman S.A.L.M. A safety factor for LC50 values allowing for differences in sensitivity among species. Water Research. 1987. no. 21. 269-276. doi:10.1016/0043-1354(87)90205-3.
Van Leeuwen, K. Van Leeuwen. Ecotoxicological effects assessment in The Netherlands; Recent development. Environmental Management. 1990. no. 14. 779-792. doi:10.1007/BF02394172.
Aldenberg Tom & Slob, Wout. Confidence Limits for Hazardous Concentrations Based on Logistically Distributed NOEC Toxicity Data. Ecotoxicology and environmental safety. 1993, no. 25, 48-63, doi:10.1006/eesa.1993.1006.
Wagner, C., Løkke H. Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Research. 1991. no. 25 (10). 1237-1242. doi:10.1016/0043-1354(91)90062-U.
Aldenberg T., Jaworska J. Uncertainty of the Hazardous Concentration and Fraction Affected for Normal Species Sensitivity Distributions. Ecotoxicology and Environmental Safety. 2000, no. 46, 1-18, doi:10.1006/eesa.1999.1869.
Stephan C. E., Mount D. J., Hanse, J. H. Gentile, Chapman, G. A. and Brungs, W. A. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection Of Aquatic Organisms and Their Uses. U.S. EPA report. 1985.
Załęska-Radziwiłł M. Wyznaczanie bezpiecznych stężeń zanieczyszczeń w wodach powierzchniowych na podstawie testów toksykologicznych. Ochrona Środowiska i Zasobów Naturalnych. 1999. №18. С. 491 – 501.
Van der Hoeven, N. Estimating the 5-Percentile of the Species Sensitivity Distributions Without Any Assumptions about the Distribution. Ecotoxicology. 2001. no. 10 (1). 25–34. doi:10.1023/A:1008998405241.
Załęska-Radziwiłł M. Badania ekotoksykologiczne w procesie ekologicznej oceny ryzyka w środowisku wodnym. Warszawa, 2007. 196 s.
Дем'янова О.М., Рибалова О.В. Новий підхід до оцінювання екологічного ризику погіршення стану басейну річки Інгулець в Херсонській області. Восточно-Европейский журнал передовых технологий. 2013. № 1, С. 45–49.