FLOW MODELLING AT COMPRESSOR CASCADE WITH TURBULATORS ON BLADE SURFACE

Authors

  • Юрій Матвійович Терещенко Доктор технічних наук, професор, професор кафедри авіаційних двигунів Механіко-енергетичного факультету Навчально-наукового Аерокосмічного інституту Національного авіаційного університету
  • Катерина Вікторівна Дорошенко Кандидат технічних наук, доцент кафедри авіаційних двигунів Механіко-енергетичного факультету Навчально-наукового Аерокосмічного інституту Національного авіаційного університету
  • Юрій Юрійович Терещенко Кандидат технічних наук, асистент кафедри авіаційних двигунів Механіко-енергетичного факультету Навчально-наукового Аерокосмічного інституту Національного авіаційного університету

DOI:

https://doi.org/10.18372/2310-5461.31.10804

Keywords:

modelling, turbolator, cascade, separarion, compressor, flow, losses level, viscosity, vortex, boundary layer

Abstract

The research of boundary layer control at compressor blade row is actually. It is practical interest to solve the problem of providing of gas-dynamic stability of compressors of gas turbine engines. Aim of work is to investigate the effect of the placement density of turbulators on blade surface at the loss level at the critical flow mode. Flow at airfoil cascade with different placement densities is studied in work. Roughness elements were placed at the entrance of the blade witch was 30% of the surface area of the blade. The characteristics of airfoil cascades at placement density coefficient 0.36, 0.24, 0.18 were investigated. Shape of roughness element is hemisphere. Using of roughness elements at the entrance of the blade with a placement density coefficient 0.18…0.36 lead to a decreasing in value of total pressure loss coefficient at critical flow mode from 0.084…0.12 (for cascade with smooth blades) to 0.03…0.041

References

Чжен, П. Управление отрывом потока [Текст] / П. Чжен. – М.: Мир, 1979. – 552 с.

Терещенко, Ю. М. Аэродинамическое совершенствование лопаточных аппаратов компрессоров [Текст] / Ю. М. Терещенко. – М.: Машиностроение, 1987. – 168 с.

Zhao, S. Exploring the intention of using aspirated cascade to replace tandem cascades [Text] / S. Zhao, J. Luo, X. Lu, J. Zhu // Journal of Thermal Science. – 2010. – Vol. 19, Issue 5. – P. 390–396. doi: 10.1007/s11630-010-0399-4.

McGlumphy, J. 3D Numerical Investigation of Tandem Airfoils for a Core Compressor Rotor [Text] / J. McGlumphy, Ng Wing-Fai, R. Steven, W. Kempf, S. Kempf // Journal of Turbomachinery. – 2010. – Vol. 132, Issue 3. – P. 1–9. doi: 10.1115/1.3149283.

Shen, C. Numerical and experimental investigation of an axial compressor flow with tandem cascade [Text] / C. Shen, X. Qiang, J. Teng // Journal of Thermal Science. – 2012. – Vol. 21, Issue 6. – P. 500–508. doi: 10.1007/s11630-012-0574-x.

Back, S. C. Effects of reynolds number and surface roughness magnitude and location on compressor cascade performance [Text] / S.C. Back, G.V. Hobson, S. J. Song, K.T. Millsaps // Journal of Turbomachinery. – 2012. – Vol. 134, Issue 5. – P. 051013-051013-6. doi: 10.1115/1.4003821

Back, S. C.Impact of surface roughness on compressor cascade performance [Text] / S.C Back, J. H. Sohn, S. J. Song // Journal of Fluids Engineering. – 2010. – Vol. 132, Issue 6. – P. 064502-064502-6. doi: 10.1115/1.4001788

Yang H. The effect of blade profile parameter on thermodynamic performance parameter of axial flow compressor [Text]// H. Yang, H. Xu // International Journal of Computer Applications in Technology. – 2014. – Vol. 50, Issue 3-4. – P. 247-252.

Taylor, R. P. Surface roughness measurements on gas turbine blades [Text] / / R. P. Taylor // Journal of Turbomachinery. – 1990. – Vol. 112, Issue 3. – P. 175–180. doi: 10.1115/1.2927630

Bogard, D. G. Characterization and laboratory simulation of turbine airfoil surface roughness and associated heated transfer [Text] / D. G. Bogard, D. L. Schmidt, M. Tabbita // Journal of Turbomachinery. – 1998. – Vol. 120, Issue 2. – P. 337–342. doi: 10.1115/96-GT-386.

Issue

Section

Energetics