COMPOSITE MATERIALS FOR WEAR-RESISTANT COATINGS OF AGRICULTURAL MACHINERY PARTS
DOI:
https://doi.org/10.18372/0370-2197.1(98).17356Keywords:
composite coatings, parts of agricultural machinery, matrix, filler, wear resistanceAbstract
An analysis of the compatibility of the matrix and fillers as components for wear-resistant composite materials was carried out. The study demonstrated that using of composite ceramic-metallic materials increase wear resistance of working parts of agricultural machinery. The study analyzed the effectiveness of the use of composite materials with dispersed particles of refractory phases, ferroalloys, self-fluxing alloys based on nickel and iron for strengthening parts of agricultural machinery that operates in conditions dominated by abrasive and corrosive-mechanical wear. The study determined that the suitable materials for applying wear-resistant composite coatings to parts that work under conditions of abrasive wear combined with strong impacts are СM, where fillers are dispersed particles of refractory phases - oxides and carbides, and СM containing increased nickel content. The study also analyzed the expediency of using component materials for the creation of composite coatings, such as matrix - PG-С1, PG1, and reinforcing components - carbon ferrochrome FX-800, chromium carbide. The study considered the structure of powder composite materials, the structure of clad and conglomerate particles, and the structure of heterodisperse and homodisperse conglomerate particles. Furthermore, the study considered the effectiveness of the use of self-fluxing alloys as a multicomponent heterogeneous system based on Ni, Co, Fe, containing a soft matrix and solid dispersed inclusions of carbide, boride, and silicide. The study determined that use of self-fluxing iron-based alloys increases a wear resistance, hardness and other properties of working parts of agricultural machines. The study defined the role of the dispersed particles and matrix in wear-resistant composite coatings. The compatibility criteria for the selection of components of composite materials are given. The main compatibility criteria include a coefficient of thermal expansion close to the base material; no adverse effect on the properties of the base; diffusive inertness to the base; sufficient adhesion; a set of necessary operational characteristics; economic feasibility.
References
Martin J.W. 6 - Composite materials / Editor(s): J.W. Martin. – Materials for Engineering (Third Edition), Woodhead Publishing. – 2006. – P. 185-215.
Kolomeichenko A., Titov N. Technology of Reconditioning with Hardening of Working Elements of Construction and Road Machines by Composite Coatings / A. Kolomeichenko, N. Titov // The VI International Scientific and Practical Conference “Information Technologies and Management of Transport Systems” (ITMTS 2020). – 2021. – Vol. 334. – Р.02017.
Metody uprochnenija poverhnostej mashinostroitel'nyh detalej / Novikov N.B., Bidnyj A.A., Ljashenko B.A. i dr. – K.: ISM AN Ukrainy, 1989. - 112 s.
Kanarchuk V.Є., Posvjatenko E.K., Lopata L.A. Shljahi udoskonalennja metodіv іnzhenerії poverhnі detalej mashin / Kanarchuk V.Є., Posvjatenko E.K., Lopata L.A. // Metody obliczeniowe i badawcze w rozwoju pojazdow samochodowych i maszyn roboczych samojezdnych. - 2000. - P. 20-23.
Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings / J. Lawal, P. Kiryukhantsev-Korneev, A. Matthews et al. //Surface and Coatings Technology. – 2017. – Vol. 310. – P. 59-69.
A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy / H. Bai, L. Zhong, L. Kang et al. // Journal of Alloys and Compounds. – 2021. – Vol. 882. – Р. 160645.
Abrasive Wear Resistance of Powder Composites at Abrasive Erosion and Abrasive Impact Wear / P. Kulu, R. Veinthal, H. Käerdi et al. // Materials Science (Medžiagotyra). – 2008. - Vol. 14, No. 4. – Р. 328 – 332.
Czupryński A. Microstructure and Abrasive Wear Resistance of Metal Matrix Composite Coatings Deposited on Steel Grade AISI 4715 by Powder Plasma Transferred Arc Welding Part 1. Mechanical and Structural Properties of a Cobalt-Based Alloy Surface Layer Reinforced with Particles of Titanium Carbide and Synthetic Metal–Diamond Composite / A. Czupryński // Materials. – 2021. – 14(9). – Р. 2382.
High Strength and High Wear-Resistant Ti Composites Fabricated by Powder Metallurgy Pressureless Sintering / Y. Liu, Y. Pan, J. Sun et al. // Advanced Materials Technologies. – 2022. - Vol. 7, Iss. 11. – Р. 2200219.
Band materials with coating based on composite powder systems / Kovtun V.A., Pleskachevsky Y.M., Zhirnov E.A., Shalobalov M.O. // World Congress et exhibition “Powder Metallurgy-2004”, Vienna, Austria, 2004. – V. 5. – Р. 87-92.
Rosso M. Ceramic and metal matrix composites: Routes and properties / M. Rosso // Journal of Materials Processing Technology. – 2006. – Vol. 175, Issues 1–3. – P. 364-375.
Cazan C., Enesca A., Andronic L. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites / C. Cazan, A. Enesca, L. Andronic // Polymers. – 2021. - 13(12). – Р. 2017.
Mіkosjanchik O. O., Shamraj V. B. Pіdvishhennja ekspluatacіjnih vlastivostej detalej sіl'skogospodars'koї tehnіki kompozicіjnimi pokrittjami/ O. O. Mіkosjanchik, V. B. Shamraj // Problemi tertja ta znoshuvannja. – 2022. – 4 (97). – S. 44-51.
Luzan S.O. Obґruntuvannja ta vdoskonalennja tehnologіj vіdnovlennja detalej. Kurs lekcіj / S.O. Luzan, O.І. Sіdashenko, S.O. Luzan. – Harkіv: HNTUSG, 2020. – 127 s.
Luzan S.A. Matematicheskoe modelirovanie integrirovannogo gazoplamennogo napylenija / Naukovij vіsnik budіvnictva – Harkіv: HNUBA, 2014. – № 2(76). – S. 160-163.
Cіdashenko O.І. Remont mashin ta obladnannja: Pіdruchnik. / O.І. Sіdashenko ta іn.; za red. prof. O.І. Sіdashenka, O.A. Naumenka. – K.: Agroosvіta, 2014. – 665 s.
Luzan S.A. Gazotermicheskoe napylenie pokrytij [Tekst]: Monografija. / S.A. Luzan – Har'kov: Izdatel'stvo "NTMT", 2009. – 134 s.
Kompozitnі ta poroshkovі materіali: navchal'nij posіbnik / P.P. Savchuk, V.P. Kashic'kij, M.D. Mel'nichuk, O.L. Sadova; za zag. red. P.P. Savchuka. – Luc'k: Vidavec': FOP Telіcin O.V., 2017. – 368 s.
Mishra S.C., Sarkar S. Processing and tribological behaviour of flyash-illmenite coating / S.C. Mishra, S. Sarkar / Thesis submitted in partial fulfillment of the requirement for the degree of master of technology in Metallurgical & Materials Engineering, department of metallurgical & materials engineering national institute of technology, Rourkela – 2008. – 120 р.
Monte Carlo simulation for exploring the mechanical properties of particle-reinforced composites based on the scale boundary finite element method / K. Zhao, R. Guo, G. Liu, Y. Li // Composite Structures. – 2022. – Vol. 297. – Р. 115933.
Demidenko O.A. Zakonomіrnostі formuvannja strukturi ta vlastivostej poroshkovih kompozicіjnih materіalіv na osnovі zalіza ta samofljusіvnih splavіv bagatofunkcіonal'nogo priznachennja / O.A. Demidenko. – Dis. na zdobuttja nauk. stup. kand. tehn. nauk: 05.16.06 – poroshkova metalurgіja ta kompozicіjnі materіali. – Nacіonal'nij tehnіchnij unіversitet Ukraїni «KPІ» іm. Іgorja Sіkors'kogo, Kiїv, 2021. – 227 s.
Lin C., Yao Y. Corrosion-Resistant Coating Based on High-Entropy Alloys / C. Lin, Y. Yao // Metals. – 2023. – 13(2). – Р. 205.
Tunable Coefficient of Thermal Expansion of Composite Materials for Thin-Film Coatings / Long X., Su T., Chen Z., et аl. // Coatings. – 2022. – 12(6). – Р.836