COMBINED METHOD OF INCREASING WEAR RESISTANCE DETAILS OF TRI-BOMECHANICAL SYSTEMS

Authors

  • Мирослав Кіндрачук Національний авіаційний університет
  •  Олександр Духота Національний авіаційний університет
  • Володимир Харченко Національний авіаційний університет
  •  Наталія Стебелецька ВП НУБіП України «Бережанський агротехнічний інститут» 
  • Андрій Гловин ВП НУБІПУ «Бережанський агротехнічний інститут»

DOI:

https://doi.org/10.18372/0370-2197.2(95).16556

Keywords:

nitrided steel, complex processing, laser processing, increase of wear- resistance

Abstract

The review of modern combined technologies of nitriding and laser treatment of steel surfaces is carried out. The mechanism of damage to the steel 30Х2НВФА ball-screw lifting mechanism of the flaps of the transport aircraft, which develops due to insufficient surface hardness of the material after the conventional heat treatment, is determined. Auger spectral analysis revealed a high intensity of interaction of the material with oxygen - its concentration reaches 41.4% at. Carburization of the friction surface, especially significant on the surface of the pitting damage, the depth of which reaches 0.7 mm, was revealed. A complex technology of surface hardening of nitriding + laser discrete hardening is offered. The radiation power was 1 kW, the diameter of the focus spot was 2.5 mm and the step between the centers of the focus spots was 2.5 mm. The total area of laser treatment was 70%. The steel temperature exceeded Ас3 and corresponded to the tempering temperature range. The depth of the nitrided layer increases to 400 μm, the maximum surface hardness is 1350-1380 HV0,2. The formation of a continuous nitrided layer with a thickness of 200-250 μm and a transition zone consisting of columnar iron nitrides, which are produced in the matrix material, are observed. As a result, the sharp gradient of mechanical properties disappears. The method of fretting research in the conditions of ball contact (ball-plane) is improved. Tests have confirmed that the wear resistance of the complex treated surface is 25% higher in dry friction, and twice - in the conditions of lubrication with grease "Era" in comparison with nitrided steel according to conventional technology 30Х2НВФА. In addition, there is no brittle destruction of the surface, significantly reduces the interaction with oxygen.

Author Biographies

Мирослав Кіндрачук, Національний авіаційний університет

член-корреспондент НАН України, докт. техн. наук, професор, професор кафедри прикладної механіки та інженерії матеріалів Національний авіаційний університет

 Олександр Духота, Національний авіаційний університет

доктор технічних наук, професор кафедри підтримання льотної придатності повітряних суден Національно авіаційного університету

Володимир Харченко, Національний авіаційний університет

молодший науковий співробітник, завідувач лабораторії кафедри прикладної механіки та інженерії матеріалів Національного авіаційного університету

 Наталія Стебелецька, ВП НУБіП України «Бережанський агротехнічний інститут» 

канд. техн. наук, доцент кафедри загальноінженерної підготовки ВП НУБіП України «Бережанський агротехнічний інститут» 

Андрій Гловин, ВП НУБІПУ «Бережанський агротехнічний інститут»

 старший викладач кафедри загальної інженерної підготовки, ВП НУБІПУ «Бережанський агротехнічний інститут»

References

M. Kindrachuk, A. Volchenko, D. Volchenko, O. Tisov, A. Kornienko, (2019) Stress-strained state of textured surfaces with selectively indented regions. Funct. Mater, 26, 3, 629-634

V.M. Panashenko, I.A. Podchernyaeva, A.I. Dukhota, A.D.Panasyuk (2012) Structural and phase transformations on spark-laser coatings under fretting corrosion in air Powder Metal. Metal Ceram., 51, 1-2, 112-120

Fedirko, V.М., Pohrelyuk, І.М., Luk’yanenko, О.H., Lavrys’, S.М., Kindrachuk, М.V., Dukhota, О.І., Tisov, О.V., Zahrebel’nyi, V.V. (2018) Thermodiffusion Saturation of the Surface of VT22 Titanium Alloy from a Controlled Oxygen–Nitrogen-Containing Atmosphere in the Stage of Aging. Mater. Sci., 53, 5, 691-701

Pashechko M.I., Shyrokov V.V., Duryahina Z.A., Vasyliv Kh.B. (2003) Structure and corrosion-mechanical properties of the surface layers of steels after laser alloying. Mater. Sci., 39, 1, 108-117.

T. Cherepova, G. Dmitrieva, O. Tisov, O. Dukhota, M. Kindrachuk (2019). Research on the Properties of Co-Tic and Ni-Tic Hip-Sintered Alloys, Acta Mechanica et Automatica. 13, 1, 57-67.

Dykha, A., Marchenko, D., Artyukh, V., Zubiekhina-Khaiiat, O., & Kurepin, V. (2018). Study and development of the technology for hardening rope blocks by reeling. Eastern-European Journal of Enterprise Technologies, 2, 1–92, 22–32.

G.G. Gorokh, M.I. Pashechko, J.T. Borc, I.A. Kashko, A.I. Latos. (2018) Matrix coatings based on anodic alumina with carbon nanostructures in the pores. Appl. Surf. Sci., 433, 829

M.I. Pashechko, K. Dziedzic, E. Mendyk, J. Jozwik, (2018) Chemical and Phase Composition of the Friction Surfaces Fe–Mn–C–B–Si–Ni–Cr Hardfacing Coatings. J. Tribol.,–140, 2, 021302

B.A.Lyashenko, E.K.Solovy`x, V.I.Mirnenko. (2010) Optimizaciya texnologii naneseniya pokry`tij po kriteriyam prochnosti i iznosostojkosti. – K.: In – t probl. prochnosti im. G.S. Pisarenko NAN Ukrainy, 193.

O.V. Dykha, R.V. Sorokatyi, S.F. Pasonskyi, M.O. Dykha (2016) Dyskretne zmishchennia ta znosostiikist tsylindrychnykh trybosystem kovzannia. Khmelnytskyi.-KhNU, 197.

G. M. Hryhorenko, L. I. Adeeva, A. Yu. Tunik, M. V. Karpets, V. N. Korzhyk, M. V. Kindrachuk, and O. V. Tisov (2020) Formation of Microstructure of Plasma-Arc Coatings Obtained Using Powder Wires with Steel Skin and B44C+(Cr,Fe)77С33+Al Filler, Metallofiz. Noveishie Tekhnol., 42, 9, 1265—1282 (in Ukrainian).

P. Schaaf, C. Illgner, F. Landry, K.-P. Lieb. (1998). Correlation of the microhard-ness with the nitrogen profiles and the phase composition in the surface of laser-nitrided steel Surf. Coat. Tech., 100-101, 4044407

Sim, C. Park, N. Kang, Y. Kim, E-J. Chun, (2019), Effect of laser-assisted nitriding with a high-power diode laser on surface hardening of aluminum-containing martensitic steel, Optics and Laser Technology, 116, 305–314

C.J. Copola, I. Avram, M.C. Terzzoli, S. Duhalde, C. Morales, T. Pe´rez, F. Audebert, Ph. Delaporte, M. Sentis (2002) Influence of laser parameters on the nitriding of low carbon steel. Appl. Surf. Sci., 197–198, 896–903

G. Wu, R. Wang, J. Yang, X. Chen, S. Cao S, W. Guo, K. Shang, B. Wei, X. Wang, L. Wang. (2011). Study of laser nitriding on the GCR15 steel surface. Physics Procedia 18, 285–290

N. Maharjan, W. Zhou, N. W. (2020). Direct laser hardening of AISI 1020 steel un-der controlled gas atmosphere. Surf. Coat. Tech., 385б 125399.

N. Yasumaru, E. Sentoku, K. Miyazaki, J. Kiuchi (2013) Femtosecond-laser-induced nanostructure formed on nitrided stainless steel. Appl. Surf. Sci., 264, 1 611-615

M. Fastow, M. Bamberger, (1988). Laser nitriding of AISI 4340 steel Scripta Metallurgica, 01, 22, 185-186.

J. Boes, A. Röttger, L. Becker, W. Theisen. (2019) Processing of gas-nitrided AISI 316L steel powder by laser powder bed fusion – Microstructure and properties. Additive Manufacturing, 30, 100836

M. B. Karamis and B. S. Yilbas. (1991). Laser melting of plasma-nitrided steel samples. Surf. Coat. Tech., 45 399 402

M.V. Kindrachuk, Yu.Ya.Dushek, M.V. Luchka (1994). The local character of the stress-strained state of a composite loaded by friction forces. Poroshkovaya Metallurgiya, 9-10, 56-61.

Kosteczkij B. I. (1970). Trenie, smazka i iznos v mashinax. K.: Texnіka, 394

A. Chattopadhyay, K.C. Hari Kumar, V. Subramanya Sarma, B.S.Murty, D.Bhattacharjee. (2010) Prediction of carbon segregation on the surface of continuously annealed hot-rolled LCAK steel. Surf. Coat. Tech., 205, 7, 2051-2054.

O. O. Mishchuk, O. V. Telemko, V. I. Dziuba L. I. Koval, V. I. Pekhno. (2014) Vplyv vilnykh vid sirky BIS-khelativ molibdenu na utvorennia hradiientnoi struktury stalevoi poverkhni tertia, Problemy tertia ta znoshuvannia, 4 (65), 4-18.

Zh. Benar. (1968). Okislenie metalov. T.1. Teoreticheskie osnovy`. Perevod s francz. M.: «Metallurgiya», 499

V.O. Kralya, O.H. Molyar, V.A. Trofimov, A.M. Khimko (2010). Defects of steel units of the high-lift devices of aircraft wings caused by fretting corrosion, Mater. Sci., 46, 1, 108-114.

M. Jiang C. Liu, Z. Chen, P. Wang, H. Liao, D. Zhao, Z. Liu, X. Wang, M. Xu, C. Lao (2021) Enhanced strength-ductility synergy of selective laser melted reduced activation ferritic / martensitic steel via heterogeneous microstructure modification, Materials Science and Engineering: A, 801, 13, 140424

El Hassanin, M. Troiano, F. Scherillo, A. T. Silvestri, V. Contaldi, R. Solimene, F. Scala, A. Squillace, P. Salatino. (2020) Rotation-assisted Abrasive Fluidised Bed Machining of AlSi10Mg parts made through Selective Laser Melting Technology. Procedia Manufacturing, 47, 1043-1049

Dukhota, O.I., Pohrelyuk, I.M., Molyar, O.H., Pichuhin, A.T., Luk'Yanenko, O.H. (2012) Effect of low-temperature oxidation and oxynitriding on the fretting corrosion of VT22 titanium alloy, Mater. Sci., 48, 2, 213-218.

Published

2022-06-09

Issue

Section

Проблеми тертя та зношування