THERMOELECTRIC HEAT TRANSFER INTENSIFIERS IN FRICTION PAIRS OF BRAKES
DOI:
https://doi.org/10.18372/0370-2197.1(94).16472Keywords:
thermoelectric cooler, heat exchange, intensifier, cooling efficiency of brakefriction pairsAbstract
In the article questions are considered: features of work of thermoelectric intensifiers in pairs of friction of brakes; principles of development of devices and systems of thermoelectric cooling of friction units; discussion of results. It is noted that materials based on Bi2Te3 with a large temperature difference in the branch of the thermocouple have significantly less than its maximum value, the general efficiency parameter. This parameter is close to the maximum, and at each point of the branch it is recommended to maintain it by changing the composition of the material along the length of the thermocouple. Criteria of efficiency of application of such intensifiers are resulted and on this basis their work is analyzed. Estimates of the positive effect of the application of the thermoelectric module are given. It is established that the ribs of the pulley rim increase the heat transfer surface by up to 20% and at the same time reduce the energy load of the brake friction pairs by 6-8%. Thermoelectric heat exchange intensifiers reduce the energy load of the friction pairs of the belt-pad brake by 18-20%. A comparative analysis of two types of cooling of the rim of the pulley-block brake pulley of the drilling winch was carried out and their efficiency was evaluated. It is shown that mostly the use of the intensifier in the friction pairs of different types of brakes contributes to the intensification of heat transfer. The principles of development of devices and systems of thermoelectric cooling of friction knots of brakes used in mechanical engineering are offered.
References
S. Dashevsky, S. Shusterman, M.P. Dariel, I. Drabkin. J. Appl. Phys., 92 (3), 1425 (2002).
A. E. Kaliazin, V. L. Kuznetsov, D. M. Rowe. Proc. 20th Int. Conf. on Thermoelec-trics, Beijing, China, June, 8—11 (IEEE, Piscataway, NJ, 2001) p. 286.
Ye. K. Iordanishvili. FTG, 8 (10), 3118 (1966).
Yu. I. Ageyev, K. F. Ivanova, M. A. Kaganov, L. S. Stil'bans, E. M. Sher. ZHTF, 55 (11), 2266 (1985).
V. L. Kuznetsov. Functionally Graded Materials for Thermoelectric Aplication, In book: CRC Thermoelectrics Handbook: Macro to Nano, ed. by D. M. Rowe (CRC Press, Tay-lor and Francics Group, Boca Ration, London – N. Y., 2006) chap. 38.
O. I. Markov. Dokl. KHIII Mezhgos. sem. «Termoelektriki i ikh primeneniya», 2013, s. 180.
O. I. Markov. ZHTF, 91 (11), 1722 (2021).
Ivanova K. F., Rivkin A. S. ZHTF, 52(7), 1406 (1982).
Drabkin I. A. Termoelektricheskiye intensifikatory teploobmena / I. A. Drabkin, L. B. Yershova. Fizika poluprovodnikov, 2021, tom 56, vyp. 1. S. 3-6.
Markov O. I. Vklad raspredelennogo effekta Pel't'ye v effektivnost' vetvi termoel-ektricheskogo okhladitelya / O. I. Markov. Fizika poluprovodnikov, 2021, tom 56, vyp. 1. S. 48-52.
Termoelektricheskiye generatory. Izd. 2-ye, pererab. i dop. / A. S. Okhotin, A. A. Yefremov, V. S. Okhotin, A. S. Pushkarskiy. M., Atomizdat, 1976, 320 s.
Friktsionnyye uzly / A. A. Petrik, N. A. Vol'chenko, P. YU. Purgal, D. A. Vol'chen-ko. Krasnodar, 2003. – 220 s.