ELECTRICAL CONDUCTIVITY OF SUPERSTRUCTURES IN SEMICONDUCTOR STRUCTURES IN BRAKE FRICTION PAIRS

Authors

  • Дмитро Вольченко Івано-Франківський національний технічний університет нафти і газу
  • Мирослав Кіндрачук Національний авіаційний університет
  •  Сергій Нікіпчук Національний університет Львівська політехніка
  •  Ярослав Савчин Дрогобицький фаховий нафтовий і газовий коледж
  •  Василь Болонний Дрогобицький фаховий нафтовий і газовий коледж

DOI:

https://doi.org/10.18372/0370-2197.1(94).16471

Keywords:

brake device, friction pair, metal friction element, superlattices in semiconductor structures, electrically conductive potential

Abstract

The physics of multilayer semiconductor microstructures of so-called superlattices, which have found important application in metal friction elements of brake devices, is presented. In the belt-pad brakes of drilling winches, the lattice rim superstructures frictionally interact with the polymer overlay FC-24A. The thickness of the AlSiNi superlattice semiconductor material is in the body of the pulley rim with a constant value of the band gap and its variable thickness due to the action of mechanical, electric and thermal fields. Silicon (Si), located between the materials aluminum (Al) and Nickel (Ni) acts as a thermal insulator, and thus contributes to the quasi-equalization of the energy load of the surface layers of the rim of the pulley. At the same time the wandering electrothermal potential decreases. At a volumetric temperature of 350 °C, silicon begins to transmit heat to Nickel. The latter, having a high coefficient of thermal conductivity, in turn gives off heat to the layers of the rim (steel 35HNL) pulley. This condition of the upper layers of the rim of the brake pulley allows to improve the performance of its friction pairs. The thermal conductivity effect of superlattices in semiconductor structures in brake friction pairs is based on the intensification of charge mobility in them. The bulk charge potential in doped lattices modulates the edges of the source material zones in such a way that electrons and holes are spatially separated. With the appropriate choice of structure parameters (alloying levels and layer thickness), this division can be made almost complete.

Author Biographies

Дмитро Вольченко, Івано-Франківський національний технічний університет нафти і газу

 докт. техн. наук, професор кафедри видобування нафти і газу Івано-Франківський національний технічний університет нафти і газу

Мирослав Кіндрачук, Національний авіаційний університет

 докт. техн. наук, професор, професор кафедри прикладної механіки та інженерії матеріалів, Національний авіаційний університет

 Сергій Нікіпчук, Національний університет Львівська політехніка

 

канд. техн. наук, доцент кафедри автомобільного транспорта Національного університету «Львівська політехніка»

 Ярослав Савчин, Дрогобицький фаховий нафтовий і газовий коледж

викладач, Дрогобицького фахового нафтового і газового коледжу

 Василь Болонний, Дрогобицький фаховий нафтовий і газовий коледж

 канд. техн. наук, доцент, заступник директора з навчальної роботи Дрогобицького фахового нафтового і газового коледжу

References

Treniye, iznos i smazka (tribologiya i tribotekhnika) / Pod obshch redaktsiyey A. V. Chichinadze. – M.: Mashinostroyeniye, 2003. – 575 s.

Dingle R., Störner H. L. Grossard A. C., Wiegman W. – Appl. Phys. Lett., 1978, v.33, p. 665.

Störner H. L. – J. Phys. Soc. Japan, 1980, v. 49, Suppl. A. p. 103.

Störner H. L., Pinczuk A., Grossard A. C., Wiegman W. – Appl. Phys. Lett., 1981, v.38, p. 691.

Störner H. L. – Surf. Sci., 1984, v. 142, Suppl. A. p. 130.

Störner H. L., Dingle R., Grossard A. C., Wiegman W., Logan R. A. – In Proc. of the 14th Intern. Conf. Phys. Semicond. 1978, Edinburgh./ Ed. B. L. H. Wilson. – London and Bristol: Institute of Physics, Conf. Ser. 43, 1979, p. 557.

Morcoc H. – IEEE Spectrum, 1984, Febr., p. 28.

Esaki L., Tsu R. – IBM J. Res. Develop., 1970, v. 14, p. 61.

V. I. Fistul'. Vvedeniye v fiziku poluprovodnikov (M., Vyssh. shk., 1975).

T. Moss, G. Barrel, B. Ellis. Poluprovodnikovaya optoelektronika (M., Mir, 1976).

V. M. Andreyev, Kh. M. Dolginov. Zhidkostnaya epitaksiya v tekhnologii poluprovodnikovykh priborov (M., Sov. radio, 1975).

I. V. Bondar'. FTP, 49 (3), 1180 (2015).

A. I. Lebedev. Fizika poluprovodnikovykh priborov (M., Fizmatlit, 2008).

K. V. Shalimova. Fizika poluprovodnikovykh priborov (M., Energoatomizdat, 1985). V. L. Bonch-Bruyevich, I. P. Zvyagin, I. V. Karpenko, A. P. Mironov. Sbornik zadach po fizike poluprovodnikov (M., Mir, 1987).

A. Ambrozyak. Konstruktsiya i tekhnologiya poluprovodnikovykh fotoelektricheskikh priborov (M., Sov. radio, 1970).

Kherman M. Poluprovodnikovyye sverkhreshetki / M. Kherman // Per. s ang. – Mir, 1989. – 240 s.

Proyektnyy i proverochnyy raschet friktsionnykh uzlov lentochno-kolodochnykh tormozov burovykh lebedok / A. Kh. Dzhanakhmedov, D. A. Vol'chenko, N. A. Vol'chenko [i dr.]. Standart. Baku: «Apostroff», 2016. – 312 s.

Izdeliya friktsionnyye iz retinaksa. Tekhnicheskiye usloviya: GOST 19851 – 73. M.: Vysshaya shkola, 1991. – 351 s.

Störner H. L. – Surf. Sci., 1983. v. 132, p. 519.

Walukievicz W. – Phys. Rev. B, 1985, v. 31, p. 5557.

Wang W, Mendez E. E., Stern F. – Appl. Phys., Lett., 1984, v. 45, p. 639.

Rosado L. Fizicheskaya elektronika i mikroelektronika: Per. s ispan. S. I. Baskakova / Pod. red. V. A. Terekhova; Predisl. V. A. Terekhova. M.: Vysshaya shkola, 1991. – 351 s.

Published

2022-04-05

Issue

Section

Проблеми тертя та зношування