INFLUENCE OF STRUCTURE AND COMPOSITION OF POWDER MATERIALS BASED ON Al-Fe-C ON THEIR WEAR RESISTANCE
DOI:
https://doi.org/10.18372/0370-2197.1(94).16470Keywords:
dispersion-strengthened alloys, wear, aluminum, structure, intermetallics, hardening, graphite, antifriction materialsAbstract
Now in the scientific world of materials scientists a lot of attention is paid to materials based on light alloys.. In this regard, promising are aluminum-based alloys, which are widely used in various fields of science and technology such as structural, electrical, heat-resistant, resistant to aggressive environments and more.. Particular attention is paid to the development of tribotechnical materials. The main structural component in aluminum alloys, which provides high wear resistance are inclusions of intermetallics. Obtaining which involves heat treatment – aging. However, this approach is limited by a certain temperature range because the thermal action causes the reverse dissolution of the alloying components in aluminum and the softening of the alloy. It is possible to obtain a stable structure when using iron as an alloying element. Due to the low solubility in aluminum it is possible to preserve the resulting structure both at room temperature and at elevated temperatures. However, classical casting methods do not allow to obtain small, evenly distributed inclusions of intermetallic specialties. Obtaining a set of physical and mechanical characteristics of such materials with predetermined properties is possible when using methods of powder metallurgy. Where the original components and their structural components are in a dispersed state. The effect of sintering temperature and composition of the initial charge on the resistance against abrasive wear of powder alloys Al + 15 wt.% Fe, Al + 15 wt.% Fe + 1-3 wt.% C compacted from powders obtained by mechanical dispersion of melts. It is shown that the resistance to abrasive wear increases with increasing sintering temperature from 600 to 800 ° C, which is due to the increase in the size of their structural component Al3Fe. Resistance against abrasive wear increases with increasing graphite content due to its lubricating action.
References
Tomoko Sano. Advanced Composites for Aerospace, Marine, and Land Applications / Tomoko Sano, T. S. Srivatsan, Michael W. Perett. – Springer, Cham, 2016.– 268 p.
Kavian Cooke. Aluminium Alloys and Composites / Kavian Cooke. –IntechOpen,
– 182 p.
Berent V. Ya. Materialyi i svoystva elektricheskih kontaktov v ustroystvah zheleznodorozhnogo transporta. – M. : Intekst, 2005. – 408 s.
Kragelskiy I. V. Trenie i iznos / I.V. Kragelskiy. – M. : Mashinostroenie, 1968. – 430 s.
Stepanchuk A. N. Tehnologiya poroshkovoy metallurgii . Uch. posobie / A. N. Ste-panchuk, I. I. Bilyik, P. A. Boyko. – K. : ”Vischa shkola”. – 1989. – 415 s.
Kiparisov S. S. Poroshkovaya metalurgiya / S. S. Kiparisov, G. A. Liberson. – M. : «Metallurgiya», 1980. – 496 s.
Crystallographic orientation and spatially resolved damage in a dispersion-hardened Al alloy / Qingge Xie, Junhe Lian, Juri J. Sidor [et al.] // Acta Materialia. – 2020. – Vol. 193. –
P. 138 – 150.
Dispersion hardening of an AlSi3Mg alloy with Cr and Mn addition / M. Tocci,
A. Pola, G. Angella, R. Donnini [et al.] // Materials Characterization. – 2019. – Vol. 10. –
P. 319 – 326.
Effect of T6-treatments on microstructure and mechanical properties of forged Al-4.4Cu-0.7Mg-0.6Si alloy / Hui-zhong Li, Ze-xiao Zhu, Xiao-peng Lian // Transactions of Nonferrous Metals Society of China. – 2017. – Vol. 27, Is. 12. – P. 2539 – 2547.
S. Srivastava. Study of wear and friction of Al-Fe metal matrix composite produced by liquid metallurgical method / S. Srivastava, S. Mohan // Tribology in industry. – 2011. – Vol. 33, Is. 3. – P. 128 – 137.
F. Czerwinski. Cerium in aluminum alloys / F. Czerwinski // Journal of Materials Science. – Vol. 55, Is. 1. – P. 24 – 72.
D. K. Mukhopadhyay. Structural evolution in mechanically alloyed Al-Fe powders / D. K. Mukhopadhyay, C. Suryanarayana, F. H. Froes // Metallurgical and Materials Transactions A. – 1995. – Vol. 26, Is. 8. – P. 1939 – 1946.
M. Baig. Thermo-mechanical responses of nanocrystalline Al-Fe alloy processed using mechanical alloying and high frequency heat induction sintering / M. Baig,
H. R. Ammar, A. H. Seikh // Materials Science and Engineering: A. – Vol. 655. –
P. 132 – 141.
Microstructure evolution of atomized Al-0.61 wt pct Fe and Al-1.90 wt pct Fe alloys / J. Chen, U. Dahlborg, C. M. Bao [et al.] // Metallurgical and Materials Transactions. – 2011. – Vol. 42, Is. 3. – P. 557 – 567.
Droplet Solidification of Impulse Atomized Al-0 61Fe and Al-1 9Fe / Hani Henein, Vincent Buchoud, Ralf-Roman Schmidt, Chuck Watt // Canadian Metallurgical Quarterly. – 2010. – Vol. 49, Is. 4. – P. 446.
Nayda Yu. I. Promyishlennoe proizvodstvo poroshkov splavov medi metodom udarnogo drobleniya strui rasplava / Yu. I. Nayda, A. N. Stepanchuk, A. Yu. Nayda // Po-roshkovaya metallurgiya, 2006. – No1/2. – S.112 – 117.
Stepanchuk A. M. Teoretychni ta tekhnolohichni osnovy otrymannia poroshkiv metaliv, splaviv i tuhoplavkykh spoluk. Pidruchnyk. / A. M. Stepanchuk. – K. : Vydavnytstvo “Politekh-nika”. – 2006. – 353 s.
ASTM G99-17 Standard Test Method for Wear Testing with a Pin-on-Disk Appa-ratus, ASTM International, WestConshohocken, PA, 2017, www.astm.org
Study Of Al-Al3Fe In High Frequency Magnetic Induction Fusion Al–Fe / Abdelhak Fekrache, Mohamed Yacine Debili, N. Boukhris, M. Draissia // Material Science. – 2013. – Vol. 9, Is. 12. – P. 467 – 470.
Hossein Sina. A study on the formation of iron aluminide (FeAl) from elemental powders / Hossein Sina, J. Corneliusson // Journal of Alloys and Compounds. – 2015. –
Vol. 636 – P. 261 – 269.