Огляд підходів до аналізу вібраційних сигналів при проведенні моніторингу та діагностики машин

Автор(и)

DOI:

https://doi.org/10.18372/2073-4751.68.16527

Ключові слова:

машинне обладнання, вібрація, перетворення Фур’є, спектр, кепстр, вейвлет

Анотація

Під час роботи машини генерують вібрацію, і виникають небажані вібрації, які порушують роботу систем машинного обладнання, що призводить до несправностей. Таким чином, вібраційний аналіз став ефективним методом контролю за справністю та продуктивністю машинного обладнання. Вібраційні сигнали містять важливу інформацію про стан обладнання, таку як джерело несправності та її серйозність. В роботі проведено огляд технік та інструментів, які можна використовувати при проведенні моніторингу та діагностики машинного обладнання за сигналами вібрації. Кожен метод та інструмент мають свої характеристики, переваги та недоліки, що були розглянуті в роботі.

Посилання

Aherwar A., Khalid M.S. Vibration analysis techniques for gearbox diagnostic: a review //International Journal of Advanced Engineering Technology. – 2012. – Т. 3. – №. 2. – С. 04-12.

Brown D.N., Jorgensen J.C. Machine condition monitoring using vibration analysis //Bruel & Kjaer, Application Note. – 1987.

Неразрушающий контроль: справочник.Т. 7. Кн. 2. Вибродиагностика / Ф.Я. Балицкий, А.В. Барков, Н.А. Баркова и др. М.: Машиностроение, 2005. – 829 с.

Zoungrana W.B., Chehri A., Zimmermann A. Automatic classification of rotating machinery defects using machine learning (ML) algorithms //Human Centred Intelligent Systems. – Springer, Singapore, 2021. – С. 193-203.

Elango S., Aravind J.G., Boopathi S. Vibration analysis of bearing by using mechanical stethoscope //International Journal of Advanced Science and Research. – 2018. – Т. 3. – №. 1. – С. 1137-1149.

Kumar S. et al. Vibration based Fault Diagnosis Techniques for Rotating Mechanical Components //IOP Conference Series: Materials Science and Engineering. – IOP Publishing, 2018. – Т. 376. – С. 012109.

Shahzad K., Cheng P., Oelmann B. Architecture exploration for a high-performance and low-power wireless vibration analyzer //IEEE Sensors Journal. – 2012. – Т. 13. – №. 2. – С. 670-682.

Scheffer C., Girdhar P. Practical machinery vibration analysis and predictive maintenance. – Elsevier, 2004.

Ansari S.A., Baig R.A PC-based vibration analyzer for condition monitoring of process machinery //IEEE Transactions on Instrumentation and Measurement. – 1998. – Т. 47. – №. 2. – С. 378-383.

Majumder B.D., Roy J.K., Padhee S. Recent advances in multifunctional sensing technology on a perspective of multi-sensor system: A review //IEEE Sensors Journal. – 2018. – Т. 19. – №. 4. – С. 1204-1214.

Sanders C.A. guide to vibration analysis and associated techniques in condition monitoring //DAK Consulting-Chiltern House http://www. dakacademy. com/newsite/index. php. – 2011. – С. 3-8.

Cheung K.W., Starling M.J., McGreevy P.D. A comparison of uniaxial and triaxial accelerometers for the assessment of physical activity in dogs //Journal of Veterinary Behavior. – 2014. – Т. 9. – №. 2. – С. 66-71.

Norton H.N. Handbook of Transducers, Prentice-Hall, Hoboken, NJ, USA, 1989.

Xianzhong S. et al. A novel PVDF based high-Gn shock accelerometer //Journal of Physics: Conference Series. – IOP Publishing, 2005. – Т. 13. – №. 1. – С. 025.

Goyal D., Pabla B.S. Condition based maintenance of machine tools–A review //CIRP Journal of Manufacturing Science and Technology. – 2015. – Т. 10. – С. 24-35.

Chaudhury S.B., Sengupta M., Mukherjee K. Vibration monitoring of rotating machines using MEMS accelerometer //International journal of scientific engineering and research. – 2014. – Т. 2. – №. 9. – С. 5-11.

Goyal D., Pabla B.S. The vibration monitoring methods and signal processing techniques for structural health monitoring: a review //Archives of Computational Methods in Engineering. – 2016. – Т. 23. – №. 4. – С. 585-594.

Fernandez A. Seismic Velocity Transducers, 2020/

Boyce M.P. Gas turbine engineering handbook. – Elsevier, 2011.

Gangsar P., Tiwari R. Multiclass fault taxonomy in rolling bearings at interpolated and extrapolated speeds based on time domain vibration data by SVM algorithms //Journal of Failure Analysis and Prevention. – 2014. – Т. 14. – №. 6. – С. 826-837.

Liu Y. et al. Asymmetric penalty sparse model based cepstrum analysis for bearing fault detections //Applied Acoustics. – 2020. – Т. 165. – С. 107288.

Randall R.B. Frequency Analysis, Bruel and Kjaer, Copenhagen, Denmark, 1987.

Trout J. Vibration analysis explained, 2020.

Loughlin P.J., Bernard G.D. Cohen–posch (positive) time–frequency distributions and their application to machine vibration analysis //Mechanical systems and signal processing. – 1997. – Т. 11. – №. 4. – С. 561-576.

Feng Z., Liang M., Chu F. Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples //Mechanical Systems and Signal Processing. – 2013. – Т. 38. – №. 1. – С. 165-205.

Runge J., Zmeureanu R. Forecasting energy use in buildings using artificial neural networks: A review //Energies. – 2019. – Т. 12. – №. 17. – С. 3254.

Castelino M. R. et al. Artificial neural network-based vibration signal analysis of rotary machines-case studies //Proceedings of the International Conference on Emerging Trends in Engineering. – 2014. – С. 211-218.

Serrano-Guerrero J., Romero F.P., Olivas J.A. Fuzzy logic applied to opinion mining: a review //Knowledge-Based Systems. – 2021. – Т. 222. – С. 107018.

Jayaswal P., Wadhwani A.K., Mulchandani K.B. Machine fault signature analysis //International Journal of Rotating Machinery. – 2008. – pp. 1–10.

Salido J.M.F., Murakami S. A comparison of two learning mechanisms for the automatic design of fuzzy diagnosis systems for rotating machinery //Applied Soft Computing. – 2004. – Т. 4. – №. 4. – С. 413-422.

Katoch S., Chauhan S.S., Kumar V. A review on genetic algorithm: past, present, and future //Multimedia Tools and Applications. – 2021. – Т. 80. – №. 5. – С. 8091-8126.

##submission.downloads##

Опубліковано

2021-12-22

Номер

Розділ

Статті