Algorithm for assessing the influence of gamma radiation on the receiver of atmospheric optical communication lines

Authors

DOI:

https://doi.org/10.18372/2073-4751.66.15717

Keywords:

atmospheric-optical communication lines, algorithm, gamma radiation, radioactivity

Abstract

One of the factors of the external environment that can significantly affect the effectiveness of the use of AOLZ may be radioactive radiation generated by various sources and phenomena.

The algorithm for estimating the effect of gamma radiation emitted by a mixture of radioactive substances on the atmospheric optical communication line receiver is presented. The developed algorithm is essential for assessing the degree of reduction of the detection ability of receivers in the field of gamma radiation and is the basis for substantiation of recommendations for improving the design of atmospheric optical communication line, recommendations for its placement to increase their application in gamma radiation.

As a result of calculations according to the proposed algorithm, the recommendations are substantiated. by increasing the thickness of the receiving path of the receiver atmospheric optical communication line. The mechanism of formation of reversible and irreversible radiation effects, which lead to an increase in dark current in the atmospheric optical communication line receiver, is determined. The developed algorithm for estimating the effect of gamma radiation emitted by a mixture of radioactive substances as an evaluation indicator takes into account the relative value of the detection capability of the atmospheric optical communication line receiver as a function of gamma radiation dose and gamma radiation dose rate.

References

Ohshima T., Onodaa S. Radiation Resistance of Semiconductors. In: Kudo H. (eds) Radiation Applications. An Advanced Course in Nuclear Engineering. Singapore: Springer, 2018. – Vol. 07.

Давыдов Л.Н. Радиационная стойкость полупроводниковых детекторов корпускулярного и гамма-излучения / Л.Н. Давыдов, А.А. Захарченко, Д.В. Кутний, В.Е. Кутний, И.М. Неклюдов, А.В. Рыбка, И.Н. Шляхов // ВІСНИК Харківського національного університету. – T. 657, серія фізична "ЯДРА, ЧАСТИНКИ, ПОЛЯ". – Bип. 1/26/, 2005. – С. 3-22.

Ito Chikara, Naito Hiroyuki, Ishikawa Takashi, Ito Keisuke and oth. Development of Remote Sensing Technique Using Radiation Resistant Optical Fibers under High-Radiation Environment Conference. Proceedings of the Second International Symposium on Radiation Detectors and Their Uses. – 2018.

Ito Chikara, Naito Hiroyuki, Ohba Hironori, Saeki Morihisa and oth. In-Vessel Inspection Probing Technique Using Optical Fibers Under High Radiation Dose. 22nd International Conference on Nuclear Engineering, Prague, Czech Republic. – 2014.

Jimenez J.J., Alvarez M.T., Tamayo R., Oter J.M., Dominguez J.A., Arruego I., Sanchez-Paramo J., Guerrero H. Proton radiation effects in high power LEDs and IREDs for optical wireless links for intra-satellite communications. IEEE Radiation Effects Data Workshop, Workshop Record. IEEE, 2006. – P. 77-84.

Johnston A.H., Rax B.G. Proton damage in linear and digital optocouplers. IEEE Transactions on Nuclear Science. – 2000. – №47(3). – P. 675-681.

Juergens J., Adamovsky G. Performance Evaluation of Fiber Bragg Gratings at Elevated Temperatures. SPIE Proceedings, 2004. – Vol. 5272.

Lu P., Bao X., Kulkarni N., Brown K. Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose level. Radiation Measurements, 1999. – № 30. – P. 725-733.

Risch Brian, Achten Frank, Jaap Jensma, Myrna Boon and oth. Bend Insensitive Optical Fibers for High Radiation Environments. Project «Bend Insensitive Optical Fibers for High Radiation Environments». – 2015. [Electronic resource.] – Available at: https://www.researchgate.net/publication/282777698_Bend_Insensitive_Optical_Fibers_for_High_Radiation_Environments.

Викулин И.М., Курмашев Ш.Д., Горбачев В.Э., Криськив С.К. Деградация элементов волоконно-оптических линий связи при радиационном облучении. Наукові праці ОНАЗ ім. О. С. Попова, 2012. – №1. – С. 57-63.

Малик Б.О., Токарєва О.В., Малик-Заморій С.Б. Підвищення працездатності оптоволоконних структур в умовах високих рівнів потужності іонізуючого випромінювання. Вопросы атомной науки и техники, 2018. – №2. – С. 13-18.

Published

2021-07-07

Issue

Section

Статті